Качество воды в Центральной Азии
Неорганические вещества
Кислород
Растворенный кислород находится в природной воде в виде молекул O2. На его содержание в воде влияют две группы противоположно направленных процессов: одни увеличивают концентрацию кислорода, другие уменьшают ее. К первой группе процессов, обогащающих воду кислородом, следует отнести:
- процесс абсорбции кислорода из атмосферы;
- выделение кислорода водной растительностью в процессе фотосинтеза;
- поступление в водоемы с дождевыми и снеговыми водами, которые обычно пересыщены кислородом.
Абсорбция кислорода из атмосферы происходит на поверхности водного объекта. Скорость этого процесса повышается с понижением температуры, с повышением давления и понижением минерализации. Аэрация - обогащение глубинных слоев воды кислородом - происходит в результате перемешивания водных масс, в том числе ветрового, вертикальной температурной циркуляции и т.д.
Фотосинтетическое выделение кислорода происходит при ассимиляции диоксида углерода водной растительностью (прикрепленными, плавающими растениями и фитопланктоном). Процесс фотосинтеза протекает тем сильнее, чем выше температура воды, интенсивность солнечного освещения и больше биогенных (питательных) веществ (P,N и др.) в воде. Продуцирование кислорода происходит в поверхностном слое водоема, глубина которого зависит от прозрачности воды (для каждого водоема и сезона может быть различной - от нескольких сантиметров - до нескольких десятков метров).
К группе процессов, уменьшающих содержание кислорода в воде, относятся реакции потребления его на окисление органических веществ: биологическое (дыхание организмов), биохимическое (дыхание бактерий, расход кислорода при разложении органических веществ) и химическое (окисление Fe2+, Mn2+, NO2-, NH4+, CH4 , H2S). Скорость потребления кислорода увеличивается с повышением температуры, количества бактерий и других водных организмов и веществ, подвергающихся химическому и биохимическому окислению. Кроме того, уменьшение содержания кислорода в воде может происходить вследствие выделения его в атмосферу из поверхностных слоев и только в том случае, если вода при данных температуре и давлении окажется пересыщенной кислородом.
В поверхностных водах содержание растворенного кислорода варьирует в широких пределах - от 0 до 14 мг/дм3 - и подвержено сезонным и суточным колебаниям. Суточные колебания зависят от интенсивности процессов его продуцирования и потребления и могут достигать 2.5 мг/дм3 растворенного кислорода. В зимний и летний периоды распределение кислорода носит характер стратификации. Дефицит кислорода чаще наблюдается в водных объектах с высокими концентрациями загрязняющих органических веществ и в эвтрофированных водоемах, содержащих большое количество биогенных и гумусовых веществ.
Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Кислородный режим оказывает глубокое влияние на жизнь водоема. Минимальное содержание растворенного кислорода, обеспечивающее нормальное развитие рыб, составляет около 5 мг O2/дм3. Понижение его до 2 мг/дм3 вызывает массовую гибель (замор) рыбы. Неблагоприятно сказывается на состоянии водного населения и пересыщение воды кислородом в результате процессов фотосинтеза при недостаточно интенсивном перемешивании слоев воды.
В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого и санитарного водопользования содержание растворенного кислорода в пробе, отобранной до 12 часов дня, не должно быть ниже 4 мг/дм3 в любой период года; для водоемов рыбохозяйственного назначения концентрация растворенного в воде кислорода не должна быть ниже 4 мг/дм3 в зимний период (при ледоставе) и 6 мг/дм3 - в летний.
Определение кислорода в поверхностных водах включено в программы наблюдений с целью оценки условий обитания гидробионтов, в том числе рыб, а также как косвенная характеристика оценки качества поверхностных вод и регулирования процесса очистки стоков. Она существенна для аэробного дыхания и является индикатором биологической активности (т.е. фотосинтеза) в водоеме.
Уровень загрязненности воды и класс качества |
растворенный кислород | ||
лето, мг/дм3 |
зима, мг/дм3 |
% насыщения | |
очень чистые, I |
9 |
14-13 |
95 |
чистые, II |
8 |
12-11 |
80 |
умеренно загрязненные, III |
7-6 |
10-9 |
70 |
загрязненные, IV |
5-4 |
5-4 |
60 |
грязные, V |
3-2 |
5-1 |
30 |
очень грязные, VI |
0 |
0 |
0 |
Кальций
Главными источниками поступления кальция в поверхностные воды являются процессы химического выветривания и растворения минералов, прежде всего известняков, доломитов, гипса, кальцийсодержащих силикатов и других осадочных и метаморфических пород.
CaCO3 + CO2 + H2O <=> Са(HCO3)2 <=> Ca2+ + 2HCO3-
Растворению способствуют микробиологические процессы разложения органических веществ, сопровождающиеся понижением рН.
Большие количества кальция выносятся со сточными водами силикатной, металлургической, стекольной, химической промышленности и со стоками сельскохозяйственных угодий, особенно при использовании кальцийсодержащих минеральных удобрений.
Характерной особенностью кальция является склонность образовывать в поверхностных водах довольно устойчивые пересыщенные растворы CaCO3. Ионная форма (Ca2+) характерна только для маломинерализованных природных вод. Известны довольно устойчивые комплексные соединения кальция с органическими веществами, содержащимися в воде. В некоторых маломинерализованных окрашенных водах до 90-100% ионов кальция могут быть связаны с гумусовыми кислотами.
В речных водах содержание кальция редко превышает 1 г Са2+/дм3. Обычно же его концентрации значительно ниже.
Концентрация кальция в поверхностных водах подвержена заметным сезонным колебаниям. В период понижения минерализации (весна) ионам кальция принадлежит преобладающая роль, что связано с легкостью выщелачивания растворимых солей кальция из поверхностного слоя почв и пород.
ПДКв кальция составляет 180 мг/дм3.
Довольно жесткие требования к содержанию кальция предъявляются к водам, питающим паросиловые установки, поскольку в присутствии карбонатов, сульфатов и ряда других анионов кальций образует прочную накипь. Данные о содержании кальция в водах необходимы также при решении вопросов, связанных с формированием химического состава природных вод, их происхождением, а также при исследовании карбонатно-кальциевого равновесия.
Магний
В поверхностные воды магний поступает в основном за счет процессов химического выветривания и растворения доломитов, мергелей и других минералов. Значительные количества магния могут поступать в водные объекты со сточными водами металлургических, силикатных, текстильных и других предприятий.
В речных водах содержание магния обычно колеблется от нескольких единиц до десятков миллиграммов в 1 дм3.
Содержание магния в поверхностных водах подвержено заметным колебаниям: как правило, максимальные концентрации наблюдаются в меженный период, минимальные - в период половодья.
ПДКвр ионов Мg2+ составляет 40 мг/дм3.
Кремний
Кремний является постоянным компонентом химического состава природных вод. Этому способствует в отличие от других компонентов повсеместная распространенность соединений кремния в горных породах, и только малая растворимость последних объясняет малое содержание кремния в воде.
Главным источником соединений кремния в природных водах являются процессы химического выветривания и растворения кремнесодержащих минералов, например алюмосиликатов:
KMg3AlSi3O10(OH)2 + 7H2CO3 + 1/2H2O --> K+ + 3Mg2+ + 7HCO3- + 2H4SiO4 + 1/2Al2Si2O5(OH)4
Значительные количества кремния поступают в природные воды в процессе отмирания наземных и водных растительных организмов, с атмосферными осадками, а также со сточными водами предприятий, производящих керамические, цементные, стекольные изделия, силикатные краски, вяжущие материалы, кремнийорганический каучук и т.д.
Формы соединений, в которых находится кремний в растворе весьма многообразны и меняются в зависимости от минерализации, состава воды и значений рН. Часть кремния находится в истинно растворенном состоянии в виде кремниевой кислоты и поликремниевых кислот:
H4SiO4 <=> H+ +H3SiO4-
Таблица. Соотношение форм производных кремниевой кислоты в воде в
зависимости от значений рН, % количества вещества эквивалентов
(К1 = 1.41.10-10).
Форма |
рН | |||
7 |
8 |
9 |
10 | |
[H4SiO4] |
99.9 |
98.6 |
87.7 |
41.5 |
[H3SiO4-] |
0.1 |
1.4 |
12.3 |
58.5 |
Поликремниевые кислоты имеют переменный состав типа mSiO2.nH2O, где m и n — целые числа. Кроме того, кремний содержится в природных водах в виде коллоидов типа xSiO2. yH2O.
Концентрация кремния в речных водах колеблется обычно от 1 до 20 мг/дм3; в подземных водах его концентрация возрастает от 20 до 30 мг/дм3, а в горячих термальных водах содержание кремния может достигать сотен миллиграммов в 1 дм3.
Сравнительно малое содержание кремния в поверхностных водах, уступающее растворимости диоксида кремния (125 мг/дм3 при 26°С, 170 мг/дм3 при 38°С), указывает на наличие в воде процессов, уменьшающих ее концентрацию. К ним надо отнести потребление кремния водными организмами, многие из которых, например диатомовые водоросли, строят свой скелет из кремния. Кроме того, кремниевая кислота как более слабая вытесняется из раствора угольной кислотой:
Na4SiO4 + 4CO2 + 4H2O = H4SiO4 + 4NaHCO3
Cпособствует неустойчивости кремния в растворе и склонность кремниевой кислоты при определенных условиях переходить в гель.
Режим кремния в поверхностных водах до некоторой степени сходен с режимом соединений азота и фосфора, однако кремний никогда не лимитирует развитие растительности.
ПДКв кремния равна 10 мг/дм3.
Углерод
Диоксид углерода
Диоксид углерода содержится в воде в основном в виде растворенных молекул CO2 и лишь малая часть его (около 1%) при взаимодействии с водой образует угольную кислоту:
CO2 + H2O <=> H2CO3
Диоксид углерода, гидрокарбонатные и карбонатные ионы являются основными компонентами карбонатной системы. В растворе между ними существует подвижное равновесие:
H2CO3 <=> Н+ + HCO3- <=> 2Н+ + CO32-
Соотношение между компонентами в значительной мере определяется величиной рН. При рН 4.5 и ниже из всех компонентов карбонатного равновесия в воде присутствует только свободная углекислота. В интервале рН=6-10 гидрокарбонатные ионы являются основной формой производных угольной кислоты (максимальное их содержание при рН=8.3-8.4). При рН более 10.5 главной формой существования угольной кислоты являются карбонатные ионы.
Главным источником поступления оксида углерода в природные воды являются процессы биохимического распада органических остатков, окисления органических веществ, дыхания водных организмов.
Одновременно с процессами поступления значительная часть диоксида углерода потребляется при фотосинтезе, а также расходуется на растворение карбонатов и химическое выветривание алюмосиликатов:
CaCO3 + CO2 + H2O <=>
Ca(HCO3)2
HSiO3- +
CO2 + H2O <=> H2SiO3 +
HCO3-
Уменьшение диоксида углерода в воде происходит также в результате его выделения в атмосферу.
Концентрация диоксида углерода в природных водах колеблется от нескольких десятых долей до 3-4 мг/дм3, изредка достигая 10-20 мг/дм3.
Обычно весной и летом содержание диокида углерода в водоеме понижается, а в конце зимы достигает максимума. Диоксид углерода имеет исключительно важное значение для растительных организмов (как источник углерода). В то же время повышенные концентрации CO2 угнетающе действуют на животные организмы. При высоких концентрациях CO2 воды становятся агрессивными по отношению к металлам и бетону в результате образования растворимых гидрокарбонатов, нарушающих структуру этих материалов.
Карбонаты
Основным источником гидрокарбонатных и карбонатных ионов в поверхностных водах являются процессы химического выветривания и растворения карбонатных пород типа известняков, мергелей, доломитов, например:
CaCO3 + CO2 + H2O <=>
Сa2+ + 2HCO3-
MgCO3 +
CO2 + H2O <=> Mg2+ +
2HCO3-
Некоторая часть гидрокарбонатных ионов поступает с атмосферными осадками и грунтовыми водами. Гидрокарбонатные и карбонатные ионы выносятся в водоемы со сточными водами предприятий химической, силикатной, содовой промышленности и т.д.
По мере накопления гидрокарбонатных и особенно карбонатных ионов последние могут выпадать в осадок:
Ca(HCO3)2 => CaCO3 + H2O
+ CO2
Сa2+ + CO32- =>
CaCO3
В речных водах содержание гидрокарбонатных и карбонатных ионов колеблется от 30 до 400 мг HCO3 -/дм3, в озерах - от 1 до 500 мг HCO3-/дм3, в морской воде - от 100 до 200 мг/дм3, в атмосферных осадках - от 30 до 100 мг/дм3, в грунтовых - от 150 до 300 мг/дм3, в подземных водах - от 150 до 900 мг/дм3.
Азот общий
Сумма минерального и органического азота в природных водах.
Азотсодержащие соединения находятся в поверхностных водах в растворенном, коллоидном и взвешенном состоянии и могут под влиянием многих физико-химических и биохимических факторов переходить из одного состояния в другое.
Средняя концентрация общего азота в природных водах колеблется в значительных пределах и зависит от трофности водного объекта: для олиготрофных изменяется обычно в пределах 0.3-0.7 мг/дм3, для мезотрофных — 0.7-1.3 мг/дм3, для эвтрофных — 0.8-2.0 мг/дм3.
Сумма минерального азота
Сумма аммонийного, нитратного и нитритного азота.
Повышение концентрации ионов аммония и нитритов обычно указывает на свежее загрязнение, в то время как увеличение содержания нитратов - на загрязнение в предшествующее время. Все формы азота, включая и газообразную, способны к взаимным превращениям.
Аммиак
В природной воде аммиак образуется при разложении азотсодержащих органических веществ. Хорошо растворим в воде с образованием гидроксида аммония. О содержании аммиака в поверхностных водах.
ПДКв аммиака составляет 40 мг/дм3, ПДКвр — 0.08 мг/дм3 (лимитирующий признак вредности — токсикологический).
Аммоний
Содержание ионов аммония в природных водах варьирует в интервале от 10 до 200 мкг/л в пересчете на азот. Присутствие в незагрязненных поверхностных водах ионов аммония связано главным образом с процессами биохимической деградации белковых веществ, дезаминирования аминокислот, разложения мочевины под действием уреазы. Основными источниками поступления ионов аммония в водные объекты являются животноводческие фермы, хозяйственно-бытовые сточные воды, поверхностный сток с сельхозугодий в случае использования аммонийных удобрений, а также сточные воды предприятий пищевой, коксохимической, лесохимической и химической промышленности. В стоках промышленных предприятий содержится до 1 мг/дм3 аммония, в бытовых стоках - 2-7 мг/дм3; с хозяйственно-бытовыми сточными водами в канализационные системы ежесуточно поступает до 10 г аммонийного азота (в расчете на одного жителя).
При переходе от олиготрофных к мезо- и эвтрофным водоемам возрастают как абсолютная концентрация ионов аммония, так и их доля в общем балансе связанного азота.
Предельно допустимая концентрация в воде водоемов хозяйственно-питьевого и культурно-бытового водопользования (ПДКв) установлена в размере 2 мг/дм3 по азоту или 2.6 мг/дм3 в виде иона NH4+ (лимитирующий показатель вредности - санитарно-токсикологический).
Присутствие аммония в концентрациях порядка 1 мг/дм3 снижает способность гемоглобина рыб связывать кислород. Признаки интоксикации - возбуждение, судороги, рыба мечется по воде и выпрыгивает на поверхность. Механизм токсического действия - возбуждение центральной нервной системы, поражение жаберного эпителия, гемолиз (разрыв) эритроцитов. Токсичность аммония возрастает с повышением pH среды.
Повышенная концентрация ионов аммония может быть использована в качестве индикаторного показателя, отражающего ухудшение санитарного состояния водного объекта, процесс загрязнения поверхностных и подземных вод, в первую очередь, бытовыми и сельскохозяйственными стоками.
Нитраты
Присутствие нитратных ионов в природных водах связано с:
- внутриводоемными процессами нитрификации аммонийных ионов в присутствии кислорода под действием нитрифицирующих бактерий;
- атмосферными осадками, которые поглощают образующиеся при атмосферных электрических разрядах оксиды азота (концентрация нитратов в атмосферных осадках достигает 0.9 - 1 мг/дм3);
- промышленными и хозяйственно-бытовыми сточными водами особенно после биологической очистки, когда концентрация достигает 50 мг/дм3;
- стоком с сельскохозяйственных угодий и со сбросными водами с орошаемых полей, на которых применяются азотные удобрения.
Главными процессами, направленными на понижение концентрации нитратов, являются потребление их фитопланктоном и денитрофицирующими бактериями, которые при недостатке кислорода используют кислород нитратов на окисление органических веществ.
В поверхностных водах нитраты находятся в растворенной форме. Концентрация нитратов в поверхностных водах подвержена заметным сезонным колебаниям: минимальная в вегетационный период, она увеличивается в осенью и достигает максимума зимой, когда при минимальном потреблении азота происходит разложение органических веществ и переход азота из органических форм в минеральные. Амплитуда сезонных колебаний может служить одним из показателей эвтрофирования водного объекта.
В незагрязненных поверхностных водах концентрация нитрат-ионов не превышает величины порядка десятков микрограммов в литре (в пересчете на азот). С нарастанием эвтрофикации абсолютная концентрация нитратного азота и его доля в сумме минерального азота возрастают, достигая n.10-1 мг/дм3. В незагрязненных подземных водах содержание нитратных ионов обычно выражается сотыми, десятыми долями миллиграмма и реже единицами миллиграммов в литре. Подземные водоносные горизонты в большей степени подвержены нитратному загрязнению, чем поверхностные водоемы (т.к. отсутствует потребитель нитратов).
Значения предельно допустимых концентраций нитратов для овощей и фруктов, мг/кг
Культура |
ПДКпр. |
Культура |
ПДКпр. |
Листовые овощи |
250 |
Картофель |
2000 |
Перец сладкий |
900 |
Капуста ранняя |
200 |
Кабачки |
250 |
Морковь |
400 |
Дыни |
150 |
Томаты |
90 |
Арбузы |
150 |
Огурцы |
60 |
Виноград столовый |
1400 |
Свекла столовая |
60 |
Яблоки |
80 |
Лук репчатый |
60 |
Груши |
600 |
Лук перо |
60 |
При длительном употреблении питьевой воды и пищевых продуктов, содержащих значительные количества нитратов (от 25 до 100 мг/дм3 по азоту), резко возрастает концентрация метгемоглобина в крови. Крайне тяжело протекают метгемоглобинемии у грудных детей (прежде всего, искусственно вскармливаемых молочными смесями, приготовленными на воде с повышенным - порядка 200 мг/дм3 - содержанием нитратов) и у людей, страдающих сердечно-сосудистыми заболеваниями. Особенно опасны грунтовые воды и питаемые ими колодцы, поскольку в открытых водоемах нитраты частично потребляются водными растениями.
Присутствие нитрата аммония в концентрациях порядка 2 мг/дм3 не вызывает нарушения биохимических процессов в водоеме; подпороговая концентрация этого вещества, не влияющая на санитарный режим водоема, 10 мг/дм3. Повреждающие концентрации соединений азота (в первую очередь, аммония) для различных видов рыб составляют величины порядка сотен миллиграммов в литре воды.
В воздействии на человека различают первичную токсичность собственно нитрат-иона; вторичную, связанную с образованием нитрит-иона, и третичную, обусловленную образованием из нитритов и аминов нитрозаминов. Смертельная доза нитратов для человека составляет 8-15 г; допустимое суточное потребление по рекомендациям ФАО/ВОЗ - 5мг/кг массы тела.
Наряду с описанными эффектами воздействия немаловажную роль играет тот факт, что азот - это один из первостепенных биогенных (необходимых для жизни) элементов. Именно этим обусловлено применение соединений азота в качестве удобрений, но, с другой стороны, с этим связан вклад вынесенного с сельскохозяйственных земель азота в развитие процессов эвтрофикации (неконтролируемого роста биомассы) водоемов. Так, с одного гектара орошаемых земель выносится в водные системы 8-10 килограммов азота.
Предельно допустимая концентрация в воде водоемов (ПДКв) установлена в размере 10 мг/л по азоту или 45 мг/л в виде иона NO3- (лимитирующий показатель вредности - санитарно-токсикологический). В требованиях к составу воды хозяйственно-питьевого назначения также указан норматив, соответствующий 10 мг/дм3 по азоту или 45 мг/дм3 в виде иона NO3- (тождественно равен стандарту США для питьевой воды).
Нитриты
Представляют собой промежуточную ступень в цепи бактериальных процессов окисления аммония до нитратов (нитрификация - только в аэробных условиях) и, напротив, восстановления нитратов до азота и аммиака (денитрофикация - при недостатке кислорода). Подобные окислительно-восстановительные реакции характерны для станций аэрации, систем водоснабжения и собственно природных вод. Кроме того, нитриты используются в качестве ингибиторов коррозии в процессах водоподготовки технологической воды и поэтому могут попасть и в системы хозяйственно-питьевого водоснабжения. Широко известно также применение нитритов для консервирования пищевых продуктов.
В поверхностных водах нитриты находятся в растворенном виде. В кислых водах могут присутствовать небольшие концентрации азотистой кислоты (HNO2) (не диссоциированной на ионы). Повышенное содержание нитритов указывает на усиление процессов разложения органических веществ в условиях более медленного окисления NO2- в NO3-, что указывает на загрязнение водного объекта, т.е. является важным санитарным показателем.
Концентрация нитритов в поверхностных водах составляет сотые (иногда даже тысячные) доли милиграмма в 1дм3; в подземных водах концентрация нитритов обычно выше, особенно в верхних водоносных горизонтах (сотые, десятые доли милиграмма в 1дм3).
Сезонные колебания нитритов характеризуются отсутствием их зимой и появлением весной при разложении неживого органического вещества. Наибольшая концентрация нитритов наблюдается в конце лета, их присутствие связано с активностью фитопланктона (установлена способность диатомовых и зеленых водорослей восстанавливать нитраты до нитритов). Осенью содержание нитритов уменьшается.
Одной из особенностью распределения нитритов по глубине водного объекта являются хорошо выраженные максимумы, обычно вблизи нижней границы термоклина и в гиполимнионе, где концентрация кислорода снижается наиболее резко.
Предельно допустимая концентрация нитритов в воде водоемов (ПДКв) установлена в размере 3.3 мг/дм3 в виде иона NO2- или 1 мг/дм3 в пересчете на азот нитритов. Показатель вредности - санитарно-токсикологический.
В соответствии с требованиями глобальной системы мониторинга состояния окружающей среды (ГСМОС/GEMS) нитрит- и нитрат-ионы входят в программы обязательных наблюдений за составом питьевой воды и являются важными показателями степени загрязнения и трофического статуса природных водоемов.
Фосфор общий
Сумма минерального и органического фосфора.
Так же, как и для азота, обмен фосфором между его минеральными и органическими формами с одной стороны, и живыми организмами - с другой, является основным фактором, определяющим его концентрацию.
Формы фосфора в природных водах
Химические формы Р |
Общий |
Фильтруемый (растворенный) |
Частицы |
Общий |
Общий растворенный и взвешенный фосфор |
Общий растворенный фосфор |
Общий фосфор в частицах |
Ортофосфаты |
Общий растворенный и взвешенный фосфор |
Растворенные ортофосфаты |
Ортофосфаты в частицах |
Гидролизируемые кислотой фосфаты |
Общие растворенные и взвешенные гидролизируемые кислотой фосфаты |
Растворенные гидролизируемые кислотой фосфаты |
Гидролизируемые кислотой фосфаты в частицах |
Органический фосфор |
Общий растворенный и взвешенный органический фосфор |
Растворенный органический фосфор |
Органический фосфор в частицах |
Концентрация общего растворенного фосфора (минерального и органического) в незагрязненных природных водах изменяется от 5 до 200 мкг/дм3
Фосфор - важнейший биогенный элемент, чаще всего лимитирующий развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора (в виде минеральных удобрений с поверхностным стоком с полей (с гектара орошаемых земель выносится 0.4-0.6 кг фосфора), со стоками с ферм (0.01-0.05 кг/сут. на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0.003-0.006 кг/сут. на одного жителя), а также с некоторыми производственными отходами приводит к резкому неконтролируемому приросту растительной биомассы водного объекта (это особенно характерно для непроточных и малопроточных водоемов). Происходит так называемое изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, солености, концентрации бактерий).
Один из вероятных аспектов процесса эвтрофикации - рост сине-зеленых водорослей (цианобактерий), многие из которых токсичны. Выделяемые этими организмами вещества относятся к группе фосфор- и серосодержащих органических соединений (нервно-паралитических ядов). Действие токсинов сине-зеленых водорослей может проявляться в возникновении дерматозов, желудочно-кишечных заболеваний; в особенно тяжелых случаях - при попадании большой массы водорослей внутрь организма может развиваться паралич.
В соответствии с требованиями глобальной системы мониторинга состояния окружающей среды (ГСМОС/GEMS) в программы обязательных наблюдений за составом природных вод включено определение содержания общего фосфора (растворенного и взвешенного, в виде органических и минеральных соединений). Фосфор является важнейшим показателем трофического статуса природных водоемов.
Фосфор органический
В этом разделе не рассматриваются синтезированные в промышленности фосфорорганические соединения. Природные соединения органического фосфора поступают в природные воды в результате процессов жизнедеятельности и посмертного распада водных организмов, обмена с донными отложениями.
Органические соединения фосфора присутствуют в поверхностных водах в растворенном, взвешенном и коллоидном состоянии.
Фосфор минеральный
Соединения минерального фосфора поступают в природные воды в результате выветривания и растворения пород, содержащих ортофосфаты (апатиты и фосфориты) и поступления с поверхности водосбора в виде орто-, мета-, пиро- и полифосфат-ионов (удобрения, синтетические моющие средства, добавки, предупреждающие образование накипи в котлах и т.п.), а также образуются при биологической переработке остатков животных и растительных организмов. Избыточное содержание фосфатов воде, особенно в грунтовой, может быть отражением присутствия в водном объекте примесей удобрений, компонентов хозяйственно-бытовых сточных вод, разлагающейся биомассы.
Основной формой неорганического фосфора при значениях pH водоема больше 6.5 является ион HPO42- (около 90%). В кислых водах неорганический фосфор присутствует преимущественно в виде H2PO4-.
Концентрация фосфатов в природных водах обычно очень мала - сотые, редко десятые доли милиграммов фосфора в литре, в загрязненных водах она может достигать нескольких миллиграммов в 1 дм3. Подземные воды содержат обычно не более 100 мкг/дм3 фосфатов; исключение составляют воды в районах залегания фосфорсодержащих пород.
Содержание соединений фосфора подвержено значительным сезонным колебаниям, поскольку оно зависит от соотношения интенсивности процессов фотосинтеза и биохимического окисления органических веществ. Минимальные концентрации фосфатов в поверхностных водах наблюдается обычно весной и летом, максимальные — осенью и зимой, в морских водах — соответственно весной и осенью, летом и зимой.
Общее токсическое действие солей фосфорной кислоты возможно лишь при весьма высоких дозах и чаще всего обусловлено примесями фтора.
В методике оценки экологической ситуации, принятой Госкомэкологией РФ, рекомендован норматив содержания растворимых фосфатов в воде - 50 мкг/дм3.
Без предварительной подготовки проб колориметрически определяются неорганические растворенные и взвешенные фосфаты.
Полифосфаты
Men(PO3)n , Men+2PnO3n+1 , MenH2PnO3n+1
Применяются для умягчения воды, обезжиривания волокна, как компонент стиральных порошков и мыла, ингибитор коррозии, катализатор, в пищевой промышленности.
Малотоксичны. Токсичность объясняется способностью полифосфатов к образованию комплексов с биологически важными ионами, особенно с кальцием.
Установленное допустимое остаточное количество полифосфатов в воде хозяйственно-питьевого назначения составляет 3.5 мг/дм3 (лимитирующий показатель вредности - органолептический).
Соединения серы
Сероводород и сульфиды
Обычно в водах сероводород не содержится или же присутствует в незначительных количествах в придонных слоях, главным образом в зимний период, когда затруднена аэрация и ветровое перемешивание водных масс. Иногда сероводород появляется в заметных количествах в придонных слоях водоемов и в летнее время в периоды интенсивного биохимического окисления органических веществ. Наличие сероводорода в водах служит показателем сильного загрязнения водоема органическими веществами.
Сероводород в природных водах находится в виде недиссоциированных молекул H2S, ионов гидросульфида HS- и весьма редко - ионов сульфида S2-. Соотношение между концентрациями этих форм определяется значениями рН воды: при рН < 10 содержанием ионов сульфида можно пренебречь, при рН=7 содержание H2S и HS- примерно одинаково, при рН=4 сероводород почти полностью (99.8%) находится в виде H2S.
Главным источником сероводорода и сульфидов в поверхностных водах являются восстановительные процессы, протекающие при бактериальном разложении и биохимическом окислении органических веществ естественного происхождения и веществ, поступающих в водоем со сточными водами (хозяйственно-бытовыми, предприятий пищевой, металлургической, химической промышленности, производства сульфатной целлюлозы (0.01-0.014 мг/дм3) и др.).
Особенно интенсивно процессы восстановления происходят в подземных водах и придонных слоях водоемов в условиях слабого перемешивания и дефицита кислорода. Значительные количества сероводорода и сульфидов могут поступать со сточными водами нефтеперерабатывающих заводов, с городскими сточными водами, водами производств минеральных удобрений.
Концентрация сероводорода в водах быстро уменьшается за счет окисления кислородом, растворенным в воде, и микробактериологических процессов (тионовыми, бесцветными и окрашенными серными бактериями). В процессе окисления сероводорода образуются сера и сульфаты. Интенсивность процессов окисления сероводорода может достигать 0.5 грамм сероводорода на литр в сутки.
Причиной ограничения концентраций в воде является высокая токсичность сероводорода, а также неприятный запах, который резко ухудшает органолептические свойства воды, делая ее непригодной для питьевого водоснабжения и других технических и хозяйственных целей. Появление сероводорода в придонных слоях служит признаком острого дефицита кислорода и развития заморных явлений.
Для водоемов санитарно-бытового и рыбохозяйственного пользования наличие сероводорода и сульфидов недопустимо (ПДК - полное отсутствие).
Сульфаты
Присутствуют практически во всех поверхностных водах и являются одним из важнейших анионов.
Главным источником сульфатов в поверхностных водах являются процессы химического выветривания и растворения серосодержащих минералов, в основном гипса, а также окисления сульфидов и серы:
2FeS2 + 7O2 + 2H2O = 2FeSO4
+ 2H2SO4;
2S + 3O2 + 2H2O =
2H2SO4.
Значительные количества сульфатов поступают в водоемы в процессе отмирания организмов и окисления наземных и водных веществ растительного и животного происхождения и с подземным стоком.
В больших количествах сульфаты содержатся в шахтных водах и в промышленных стоках производств, в которых используется серная кислота, например, окисление пирита. Сульфаты выносятся также со сточными водами коммунального хозяйства и сельскохозяйственного производства.
Ионная форма SO42- характерна только для маломинерализованных вод. При увеличении минерализации сульфатные ионы склонны к образованию устойчивых ассоциированных нейтральных пар типа CaSO4, MgSO4.
Содержание сульфатных ионов в растворе ограничивается сравнительно малой растворимостью сульфата кальция (произведение растворимости сульфата кальция L=6.1.10-5). При низких концентрациях кальция, а также в присутствии посторонних солей концентрация сульфатов может значительно повышаться.
Сульфаты активно участвуют в сложном круговороте серы. При отсутствии кислорода под действием сульфатредуцирующих бактерий они восстанавливаются до сероводорода и сульфидов, которые при появлении в природной воде кислорода снова окисляются до сульфатов. Растения и другие автотрофные организмы извлекают растворенные в воде сульфаты для построения белкового вещества. После отмирания живых клеток гетеротрофные бактерии освобождают серу протеинов в виде сероводорода, легко окисляемого до сульфатов в присутствии кислорода.
Концентрация сульфата в природной воде лежит в широких пределах. В речных водах и в водах пресных озер содержание сульфатов часто колеблется от 5-10 до 60 мг/дм3, в дождевых водах - от 1 до 10 мг/дм3. В подземных водах содержание сульфатов нередко достигает значительно больших величин.
Концентрация сульфатов в поверхностных водах подвержена заметным сезонным колебаниям и обычно коррелирует с изменением общей минерализации воды. Важнейшим фактором, определяющим режим сульфатов, являются меняющиеся соотношения между поверхностным и подземным стоком. Заметное влияние оказывают окислительно-восстановительные процессы, биологическая обстановка в водном объекте и хозяйственная деятельность человека.
Повышенные содержания сульфатов ухудшают органолептические свойства воды и оказывают физиологическое воздействие на организм человека. Поскольку сульфат обладает слабительными свойствами, его предельно допустимая концентрация строго регламентируется нормативными актами. Весьма жесткие требования по содержанию сульфатов предъявляются к водам, питающим паросиловые установки, поскольку в присутствии кальция сульфаты образуют прочную накипь. Вкусовой порог сульфата магния лежит в пределах от 400 до 600 мг/дм3, для сульфата кальция - от 250 до 800 мг/дм3. Наличие сульфата в промышленной и питьевой воде может быть как полезным, так и вредным.
ПДКв сульфатов составляет 500 мг/дм3, ПДКвр - 100 мг/дм3.
Не замечено, чтобы сульфат в питьевой воде влиял на процессы коррозии, но если используются свинцовые трубы, то концентрация сульфатов выше 200 мг/дм3 может привести к вымыванию в воду свинца.
Сероуглерод
Прозрачная летучая жидкость с резким запахом. Может в больших количествах попадать в открытые водоемы со сточными водами комбинатов вискозного шелка, заводов искусственной кожи и ряда других производств.
При содержании сероуглерода в количестве 30-40 мг/дм3 наблюдается угнетающее влияние на развитие сапрофитной микрофлоры. Максимальная концентрация, не оказывающая токсического действия на рыб — 100 мг/дм3.
Сероуглерод является политропным ядом, вызывающим острые и хронические интоксикации. Поражает центральную и периферическую нервную систему, вызывает нарушения сердечно-сосудистой системы. Оказывает поражающее действие на органы желудочно-кишечного тракта. Нарушает обмен витамина В6 и никотиновой кислоты.
ПДКв — 1.0 мг/дм3 (лимитирующий показатель вредности — органолептический), ПДКвр — 1.0 мг/дм3 (лимитирующий показатель вредности — токсикологический).
Натрий
Натрий является одним из главных компонентов химического состава природных вод, определяющих их тип.
Основным источником поступления натрия в поверхностные воды суши являются изверженные и осадочные породы и самородные растворимые хлористые, сернокислые и углекислые соли натрия. Большое значение имеют также биологические процессы, протекающие на водосборе, в результате которых образуются растворимые соединения натрия. Кроме того, натрий поступает в природные воды с хозяйственно-бытовыми и промышленными сточными водами и с водами, сбрасываемыми с орошаемых полей.
В поверхностных водах натрий мигрирует преимущественно в растворенном состоянии. Концентрация его в речных водах колеблется от 0.6 до 300 мг/дм3 в зависимости от физико-географических условий и геологических особенностей бассейнов водных объектов. В подземных водах концентрация натрия колеблется в широких пределах - от миллиграммов до граммов и десятков граммов в 1 дм3. Это определяется составом водовмещающих пород, глубиной залегания подземных вод и другими условиями гидрогеологической обстановки.
ПДКв натрия составляет 200 мг/дм3, ПДКвр - 120 мг/дм3.
Калий
Калий - один из главных компонентов химического состава природных вод. Источником его поступления в поверхностные воды являются породы (полевой шпат, слюда) и растворимые соли. Различные растворимые соединения калия образуются также в результате биологических процессов, протекающих в коре выветривания и почвах. Для калия характерны склонность сорбироваться на высокодисперстных частицах почв, пород, донных отложений и задерживаться растениями в процессе их питания, роста. Это приводит к меньшей подвижности калия по сравнению с натрием, и поэтому калий находится в природных водах, особенно поверхностных, в более низкой концентрации, чем натрий.
В природные воды калий поступает также с хозяйственно-бытовыми и промышленными сточными водами, а также с водой, сбрасываемой с орошаемых полей, и с поверхностным водным стоком с сельскохозяйственных угодий.
Концентрация в речной воде обычно не превышает 18 мг/дм3, в подземных водах колеблется от миллиграмов до граммов и десятков граммов в 1 дм3, что определяется составом водовмещающих пород, глубиной залегания подземных вод и другими условиями гидрогеологической обстановки.
ПДКвр калия составляет 50 мг/дм3.
Фтор
В речные воды фтор поступает из пород и почв при разрушении фторсодержащих минералов (апатит, турмалин) с почво-грунтовыми водами и при непосредственном смыве поверхностными водами. Источником фтора также служат атмосферные осадки. Повышенное содержание фтора может быть в некоторых сточных водах предприятий стекольной и химической промышленности (производство фосфорных удобрений, стали, алюминия), в некоторых видах шахтных вод и в сточных водах рудообогатительных фабрик.
В природных водах фтор находится в виде фтор-иона F- и комплексных ионов [AlF6]3-, [FeF4]-, [FeF5]2-, [FeF6]3-, [CrF6]3-, [TiF6]2-, и др.
Миграционная способность фтора в природных водах в значительной степени зависит от содержания в них ионов кальция, дающих с ионами фтора малорастворимое соединение (произведение растворимости фторида кальция L = 4.10-11). Большую роль играет режим углекислоты, которая растворяет карбонат кальция, переводя его в гидрокарбонат. Повышенные значения рН способствуют увеличению подвижности фтора.
Содержание фтора в речных водах колеблется от 0.05 до 1.9 мг/дм3, атмосферных осадках - от 0.05 до 0.54 мг/дм3, подземных водах - от 0.3 до 4.6 мг/дм3, иногда достигая насыщения по отношению к CaF2. В термальных водах концентрация фтора достигает в отдельных случаях 10 мг/дм3, в океанах фтора содержится 1.3 мг/дм3.
Фтор является устойчивым компонентом природных вод. Внутригодовые колебания концентрации фтора в речных водах невелики (обычно не более, чем в 2 раза). Фтор поступает в реки преимущественно с грунтовыми водами. Содержание фтора в паводковый период всегда ниже, чем в меженный, так как понижается доля грунтового питания.
Повышенные количества фтора в воде (более 1.5 мг/дм3) оказывают вредное действие на людей и животных, вызывая костное заболевание (флюороз). Содержание фтора в питьевой воде лимитируется. Однако очень низкое содержание фтора в питьевых водах (менее 0.01 мг/дм3) также вредно сказывается на здоровье, вызывая опасность заболевания кариесом зубов.
Предельно допустимая концентрация фтора в питьевой воде равна 1.5 мг/дм3.
Хлор
Хлор, присутсвующий в воде в виде хлорноватистой кислоты или иона гипохлорита, принято называть свободным хлором. Хлор, существующий в виде хлораминов (моно- и ди-), а также в виде треххлористого азота, называют связанным хлором. Общий хлор - это сумма свободного и связанного хлора.
Свободный хлор достаточно часто применяют для дезинфекции питьевой и сточной воды. В промышленности хлор используют при отбеливании в бумажном производстве, производстве ваты, для уничтожения паразитов в холодильных установках и т.д. При растворении хлора в воде образуются соляная и хлорноватистая кислоты:
Cl2 + H2O <=> H+ + Cl- + HClO
В зависимости от условий, таких как pH, температура, количество органических примесей и аммонийного азота, хлор может присутствовать и в других формах, включая ион гипохлорита (OCl-) и хлорамины.
Активный хлор должен отсутствовать в воде водоемов, лимитирующий показатель вредности общесанитарный.
Хлориды
В речных водах и водах пресных озер содержание хлоридов колеблется от долей миллиграмма до десятков, сотен, а иногда и тысяч миллиграммов на литр. В морских и подземных водах содержание хлоридов значительно выше - вплоть до пересыщенных растворов и рассолов.
Хлориды являются преобладающим анионом в высокоминерализованных водах. Концентрация хлоридов в поверхностных водах подвержена заметным сезонным колебаниям, коррелирующим с изменением общей минерализации воды.
Первичными источниками хлоридов являются магматические породы, в состав которых входят хлорсодержащие минералы (содалит, хлорапатит и др.), соленосные отложения, в основном галит. Значительные количества хлоридов поступают в воду в результате обмена с океаном через атмосферу, взаимодействия атмосферных осадков с почвами, особенно засоленными, а также при вулканических выбросах. Возрастающее значение приобретают промышленные и хозяйственно-бытовые сточные воды.
В отличие от сульфатных и карбонатных ионов, хлориды не склонны к образованию ассоциированных ионных пар. Из всех анионов хлориды обладают наибольшей миграционной способностью, что объясняется их хорошей растворимостью, слабо выраженной способностью к сорбции на взвесях и потреблением водными организмами. Повышенные содержания хлоридов ухудшают вкусовые качества воды и делают ее малопригодной для питьевого водоснабжения и ограничивают применение для многих технических и хозяйственных целей, а также для орошения сельскохозяйственных угодий. Если в питьевой воде есть ионы натрия, то концентрация хлорида выше 250 мг/дм3 придает воде соленый вкус. Концентрации хлоридов и их колебания, в том числе суточные, могут служить одним из критериев загрязненности водоема хозяйственно-бытовыми стоками.
Нет данных о том, что высокие концентрации хлоридов оказывают вредное влияние на человека. ПДКв составляет 350 мг/дм3), ПДК вр - 300 мг/дм3.
Бром
Источником поступления бромидов могут быть грунтовые или подземные воды либо сточные воды предприятий химической промышленности. Бромиды щелочных и щелочноземельных металлов (NaBr, KBr, MgBr2) встречаются в морской воде (0.065% Br), рапе соляных озер (до 0.2% Br) и подземных рассолах, обычно связанных с соляными и нефтяными месторождениями (до 0.1% Br). Содержание брома в подземных водах увеличивается с ростом минерализации.
Пресные воды отличаются, как правило, наинизшими количествами брома, колеблющимися от 0.001 до 0.2 мг/дм3. Сравнительно много брома в водах минеральных источников (до 10 - 50 мг/дм3).
ПДКв бромид-иона составляет 0.2 мг/дм3 .
Иод
Рассеянный иод выщелачивается природными водами из магматических горных пород и концентрируется организмами, например водорослями. Иод концентрируется в почвах и илах. Важным источником иода в почвах и водах являются дождевые осадки, захватывающие иод из атмосферы, в которую он приносится ветром со стороны моря.
Источниками поступления иода в поверхностные воды являются атмосферные осадки, воды нефтяных месторождений и сточные воды некоторых отраслей химической и фармацевтической промышленности.
В речных водах концентрация иода составляет 1 - 74 мкг/дм3, в атмосферных осадках 0 - 65 мкг/дм3, в подземных водах 0.1 - 3 мкг/дм3. Содержание иода учитывается при санитарной оценке природных вод. ПДК не установлена.
С недостаточностью иода в пище связано тяжелое заболевание щитовидной железы у человека (эндемический зоб).
Бор
Источником бора в природных водах являются подземные воды, обогащенные бором за счет бороносных осадочно-метаморфических пород (борацит, бура, калиборит, улексит, колеманит, ашарит). Возможно поступление со сточными водами стекольного, металлургического, машиностроительного, текстильного, керамического, кожевенного производств, а также с бытовыми сточными водами, насыщенными стиральными порошками. Локальное загрязнение почвы возможно при разработке борсодержащих руд и внесение в нее борсодержащих удобрений.
В природных водах находится в виде ионов борных кислот. В щелочной среде преимущественно в виде метаборат-иона (ВО2-). По мере понижения рН среды все большая роль будет принадлежать ортоборной кислоте (происходит частичная диссоциация кислоты на ионы H2BO3- и ВО33-).
Средняя концентрация в речных водах 100 мкг/дм3.
Малотоксичен для рыб. Оксид бора и ортоборная кислота относятся к сильнодействующим токсичным веществам с политропным действием. Обладают эмбриотоксическим действием. В связи с употреблением воды из богатых бором водоисточников возникает хроническая интоксикация.
ПДКв (В3+) — 0.3 мг/дм3, ПДКвр ортоборной кислоты (Н3ВО3) — 0.1 мг/дм3.
Цианиды
В поверхностные воды цианистые соединения поступают с промышленными сточными водами гальванических цехов, рудообогатительных фабрик, предприятий золотопромышенности, газогенераторных станций, газовых и коксохимических заводов, предприятий цветной и черной металлургии.
Цианиды встречаются в природных водах в форме ионов или в виде слабодиссоциированной и весьма токсичной цианистоводородной кислоты. Кроме того, в воде могут присутствовать комплексные цианиды с металлами.
Уменьшение концентрации простых цианидов может происходить под воздействием угольной и других кислот, в результате окисления и гидролиза, а также образования нерастворимых соединений и сорбции взвешенными веществами и донными отложениями.
Цианистые соединения чрезвычайно ядовиты. Для водных объектов ПДКв составляет 0.1 мг/дм3 (лимитирующий признак вредности — санитарно-токсикологический), ПДКвр 0.05 мг/дм3 (лимитирующий признак вредности — токсикологический).
Роданиды (тиоцианаты)
В поверхностные воды поступают со сточными водами коксохимических заводов, горнообогатительных комбинатов, металлургических предприятий. Образование тиоцианатов возможно при производстве удобрений.
ПДКв — 0.1 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0.15 мг/дм3.
Допустимое содержание тиоционатов в сточных водах, используемых для орошения сельскохозяйственных земель, не нарушающее почвенных процессов и не оказывающее токсического действия на растения, выросшие на орошаемых землях, а при потреблении этих растений — на животных и человека, рекомендуется на уровне 2 мг/дм3.
Стронций
Источниками стронция в природных водах являются горные породы, наибольшие количества его содержат гипсоносные отложения.
Низкая концентрация стронция в природных водах объясняется слабой растворимостью их сернокислых соединений (растворимость SrSO4 при 18°С 114 мг/дм3 ).
В пресных водах концетрация стронция обычно намного ниже 1 мг/дм3 и выражается в микрограммах на литр. Встречаются районы с повышенной концентрацией этого иона в водах.
Будучи близок к кальцию по химическим свойствам, стронций резко отличается от него по своему биологическому действию. Избыточное содержание этого элемента в почвах, водах и продуктах питания вызывает "уровскую болезнь" у человека и животных (по названию реки Уров в Восточном Забайкалье) — поражение и деформацию суставов, задержку роста и др.
ПДКв составляет 7 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).
Алюминий
Источники поступления алюминия в природные воды:
- частичное растворение глин и алюмосиликатов;
- атмосферные осадки;
- сточные воды различных производств.
В природных водах алюминий присутствует в ионной, коллоидной и взвешенной формах. Миграционная способность невысокая. Образует довольно устойчивые комплексы, в том числе органоминеральные, находящиеся в воде в растворенном или коллоидном состоянии.
Одним из распространенных соединений алюминия является боксит — Al(OH)3. Растворимость его является функцией рН. При низких значениях рН < 4.5 в растворе преобладают ионы Al3+, при рН =5-6 в растворе преобладают ионы Al(OH)2+, при рН > 7 в растворе преобладают ионы Al(OH)4-.
Концентрация алюминия в поверхностных водах обычно колеблется в пределах n.10-2 — n.10-1 мг/дм3, в некоторых кислых водах иногда достигает нескольких граммов в 1 дм3.
Ионы алюминия обладают токсичностью по отношению к многим видам водных живых организмов и человеку.
ПДКв составляет 0.5 мг/дм3.
Титан
Соединения титана в природные воды поступают в результате процессов выветривания титановых руд (ильменит, перовскит, лопарит, сфен) и со сточными водами предприятий металлургической и металлообрабатывающей промышленности, производства титановых белил и др. В природных водах может находиться в виде различных минеральных и органических комплексных соединений. Его присутствие возможно в виде коллоидов гидроксида титана.
В незагрязненных поверхностных водах находится в субмикрограммовых концентрациях. В подземных водах концентрация титана обычно невелика и составляет единицы или десятки микрограммов в 1 дм3, в морской воде - до 1 мкг/дм3.
ПДКв
титана составляет 0.1 мг/дм3 (лимитирующий показатель
вредности — общесанитарный).