ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ (РОСГИДРОМЕТ)

РУКОВОДЯЩИЙ ДОКУМЕНТ

РД 52.24.381-2006

МАССОВАЯ КОНЦЕНТРАЦИЯ НИТРИТОВ В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ С РЕАКТИВОМ ГРИССА

Ростов-на-Дону 2006

Предисловие

- 1 РАЗРАБОТАН ГУ «Гидрохимический институт»
- 2 РАЗРАБОТЧИКИ Л.В. Боева, канд. хим. наук., Ю.А. Андреев
- 3 СОГЛАСОВАН с Начальником УМЗА и ГУ «ЦКБ ГМП» Росгидромета
- 4 УТВЕРЖДЕН Заместителем Руководителя Росгидромета 27 марта 2006 г.
- 5 АТТЕСТОВАН ГУ «Гидрохимический институт», свидетельство об аттестации № 32.24-2005 от 30 августа 2005 г.
 - 6 ЗАРЕГИСТРИРОВАН ГУ ЦКБ ГМП за номером РД 52.24.381-2006 30.03.2006

Внесен в Федеральный реестр методик выполнения измерений, применяемых в сферах распространения государственного метрологического контроля и надзора за номером Φ P. 1.31.2006.02522

7 ВЗАМЕН РД 52.24.481.95 «Методические указания. Методика выполнения Массовой концентрации нитритов в водах фотометрическим методом с реактивом Грисса»

Введение

Азот относятся к числу биогенных элементов и его соединения имеют особое значение для развития жизни в водных объектах. При отсутствии азотсодержащих соединений в воде рост и развитие водной растительности прекращается, однако избыток этих соединений также приводит к негативным последствиям, вызывая процессы эвтрофикации водного объекта и ухудшение качества воды.

Минеральные формы азота в водных объектах представлены, главным образом нитритами, нитратами, аммиаком и ионами аммония.

Источниками поступления соединений азота в природные воды являются разложение клеток отмерших организмов, прижизненные выделения гидробионтов, атмосферные осадки, фиксация из воздуха в результате жизнедеятельности азотфиксирующих бактерий. Значительное количество азота может попадать в водные объекты с бытовыми, сельскохозяйственными и промышленными сточными водами.

Понижение содержания соединений азота в водоемах связано, в основном, с потреблением их водными растениями. Некоторую роль в этом процессе играет денитрификация, т.е. перевод связанного азота в свободное состояние.

Появление нитритов в природных водах связано, главным образом, с процессами минерализации органических веществ и нитрификации. Они являются промежуточным продуктом биохимического окисления аммиака или восстановления нитратов.

Нитриты - неустойчивые компоненты, поэтому в незагрязненных поверхностных водах они присутствуют в незначительных количествах (до 10 мкг/дм³). Повышение содержания нитритов указывает на усиление процессов микробиального разложения органических остатков в условиях дефицита кислорода и является одним из критериев сильного загрязнения водного объекта. Наибольшее содержание нитритов наблюдается к концу лета, что связано с протеканием процессов отмирания водных организмов и разложением органических остатков, а также увеличением интенсивности процесса восстановления нитратов бактериями-денитрификаторами.

В подземных водах содержание нитритов, как правило, выше, особенно в верхних водоносных горизонтах и может достигать сотен микрограммов в кубическом дециметре.

Содержание нитритов в природных водах нормируется. Предельно допустимая концентрация нитритов для водных объектов рыбохозяйственного назначения $0.02~{\rm Mr/дm^3}$, хозяйственно-питьевого и культурно-бытового назначения - $1.0~{\rm Mr/дm^3}$ в пересчете на азот.

РД 52.24.381-2006

РУКОВОДЯЩИЙ ДОКУМЕНТ

МАССОВАЯ КОНЦЕНТРАЦИЯ НИТРИТОВ В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ С РЕАКТИВОМ ГРИССА

Дата введения 2006-04-01

1 Область применения

- 1.1 Настоящий руководящий документ устанавливает методику выполнения измерений массовой концентрации (далее методика) нитритов в пробах природных и очищенных сточных вод в диапазоне от 0,010 до 0,250 мг/дм³ в пересчете на азот (далее нитритного азота) фотометрическим методом. При анализе проб воды с массовой концентрацией нитритного азота, превышающей 0,250 мг/дм³, допускается выполнение измерений после соответствующего разбавления пробы дистиллированной водой.
- 1.2 Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

2 Нормативные ссылки

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

МИ 2881-2004 Рекомендация. ГСИ. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа.

Ссылки на остальные нормативные документы приведены в разделах 4, А.3 и А.4.

3 Приписанные характеристики погрешности измерений

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 1.

Таблица 1 - Диапазон измерений, значения характеристик погрешности и ее составляющих

Диапазон измерений массовой концентрации нитритного азота X, мг/дм ³	повторяемости	Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости) σ_R , $M\Gamma/M^3$	Показатель правильности (границы систематической погрешности при вероятности $P = 0.95$) $\pm \Delta_c$, мг/дм ³	Показатель точности (границы погрешности при вероятности $P = 0.95$) $\pm \Delta$, мг/дм ³
От 0,010 до 0,250	$0,001 + 0,050 \cdot X$	$0,002 + 0,066 \cdot X$	$0,002 + 0,027 \cdot C$	$0,004 + 0,13 \cdot X$
включ.				

При выполнении измерений массовой концентрации нитритного азота свыше $0,250~\text{мг/дм}^3$ после соответствующего разбавления погрешность измерения не превышает величины $\Delta \cdot \eta \cdot$, где Δ - погрешность измерения концентрации нитритного азота в разбавленной пробе; η - степень разбавления.

Предел обнаружения нитритного азота фотометрическим методом с реактивом Грисса равен $0{,}002~{\rm M}{\rm F}/{\rm Jm}^3$.

- 3.2 Значения показателя точности методики используют при:
- оформлении результатов измерений, выдаваемых лабораторией;
- оценке деятельности лабораторий на качество проведения измерений;
- оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

4 Средства измерений, вспомогательные устройства, реактивы, материалы

4.1 Средства измерений, вспомогательные устройства

При выполнении измерений применяют следующие средства измерений и другие технические средства:

- 4.1.1 Фотометр или спектрофотометр любого типа (КФК-2, КФК-2мп, КФК-3, СФ-46, СФ-56 и др.)
 - 4.1.2 Весы лабораторные высокого (II) класса точности по ГОСТ 24104-2001.
- 4.1.3 Весы лабораторные обычного (IV) класса точности по ГОСТ 29329-92 с наибольшим пределом взвешивания 200 г.
- 4.1.4 Государственный стандартный образец состава водных растворов нитрит-ионов ГСО 7479-98 (далее ГСО).
- 4.1.5 Колбы мерные 2-го класса точности исполнения 2, 2а по ГОСТ 1770-74 вместимостью:

50 см³ - 1 шт. 100 см³ - 10 шт. 250 см³ - 1 шт.

 500 см^3 - 1 шт.

4.1.6 Пипетки градуированные 2-го класса точности исполнения 1, 2 по ГОСТ 29227-91 вместимостью:

1 см³ - 1 шт. 2 см³ - 3 шт.

5 см³ - 2 шт. 10 см³ - 1 шт.

4.1.7 Пипетки с одной отметкой 2-го класса точности исполнения 2 по ГОСТ 29169-91 вместимостью:

5 см³ - 1 шт. 10 см³ - 2 шт. 20 см³ - 1 шт.

 $50 \text{ см}^3 - 1 \text{ шт.}$

4.1.8 Цилиндры мерные исполнения 1, 3 по ГОСТ 1770-74 вместимостью:

 25 cm^3 - 1 IIIT. 100 cm^3 - 1 IIIT. 500 cm^3 - 1 IIIT.

4.1.9 Колбы конические Кн исполнения 2 по ГОСТ 25336-82 вместимостью:

 $50 \text{ cm}^3 - 10 - 15 \text{ mt}.$ $250 \text{ cm}^3 - 1 \text{ mt}.$

4.1.10 Стаканы тип В, исполнения 1, по ГОСТ 25336-82 вместимостью:

600 см³ - 1 шт. 1000 см³ - 1 шт.

- 1 IIIT.

- 4.1.11 Пробирка коническая исполнения 1 по ГОСТ 1770-74
- 4.1.12 Стаканчики для взвешивания (бюксы) CB-19/9 по ГОСТ 25336-82 2 шт.
- 4.1.13 Воронка лабораторная по ГОСТ 25336-82 диаметром 56 мм
- 4.1.14 Ступка № 3 или № 4 по ГОСТ 9147-80
- 4.1.15 Эксикатор исполнения 2, диаметром корпуса 190 мм по ГОСТ 25336-82.
- 4.1.16 Шкаф сушильный общелабораторного назначения.
- 4.1.17 Устройство для фильтрования проб с использованием мембранных или бумажных фильтров.
 - 4.1.18 Баня водяная.
 - 4.1.19 Шпатель пластмассовый.
- 4.1.20 Посуда стеклянная (в том числе томного стекла) для отбора проб и хранения растворов вместимостью 0.05; 0.1; 0.25; 0.5 и 1.0 дм³.
 - 4.1.21 Холодильник бытовой.

Допускается использование других типов средств измерений, вспомогательных устройств, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

4.2 Реактивы и материалы

При выполнении измерений применяют следующие реактивы и материалы:

- 4.2.1 Натрий азотистокислый (нитрит натрия) по ГОСТ 4197-74, х.ч. (при отсутствии ГСО).
- 4.2.2 Реактив Грисса по ТУ 6-09-3569-74, ч.д.а. или кислота сульфаниловая по ГОСТ 5821-78, ч.д.а. и 1-нафтиламин, ч.д.а.
 - 4.2.3 Кислота уксусная ледяная по ГОСТ 61-75, х.ч.
 - 4.2.4 Хлорид кальция обезвоженный по ТУ 6-09-4711-81, ч.
 - 4.2.5 Квасцы алюмокалиевые по ГОСТ 4329-77, ч.д.а.
 - 4.2.6 Аммиак водный по ГОСТ 3760-79, ч.д.а.
 - 4.2.7 Вода дистиллированная по ГОСТ 6709-72.
 - 4.2.8 Фильтры бумажные обеззоленные «белая лента» по ТУ 6-09-1678-86.
- 4.2.9 Фильтры мембранные «Владипор МФАС-ОС-2», 0,45 мкм, по ТУ 6-55-221-1-29-89 или другого типа, равноценные по характеристикам, или фильтры бумажные обеззоленные «синяя лента» по ТУ 6-09-1678-86.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

Документ скачан с портала нормативных документов www.OpenGost.ru

5 Метод измерения

Выполнение измерений массовой концентрации нитритного азота фотометрическим методом основано на способности первичных ароматических аминов, в частности сульфаниловой кислоты, давать в присутствии азотистой кислоты диазосоединение, которое, вступая в реакцию азосочетания с 1-нафтиламином, образует интенсивно окрашенный азокраситель. Максимум оптической плотности в спектре азокрасителя наблюдается при 520 нм.

6 Требования безопасности, охраны окружающей среды

- 6.1 При выполнении измерений массовой концентрации нитритов в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.
- 6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2, 3 классам опасности по ГОСТ 12.1.007.
- 6.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005.
- 6.4 Вредно действующие вещества подлежат сбору и утилизации в соответствии с установленными правилами.
 - 6.5 Дополнительных требований по экологической безопасности не предъявляется.

7 Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускаются лица со средним профессиональным образованием или без профессионального образования, но имеющие стаж работы в лаборатории не менее 6 мес., освоившие методику.

8 Условия выполнения измерений

При выполнении измерений в лаборатории должны быть соблюдены следующие условия: температура окружающего воздуха (22 ± 5) °C; атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.); влажность воздуха не более 80 % при 25 °C; напряжение в сети (220 ± 10) В; частота переменного тока в сети питания (50 ± 1) Γ ц.

9 Отбор и хранение проб

Отбор проб для определения нитритного азота производится в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592. Пробу фильтруют через мембранный фильтр 0,45 мкм, очищенный кипячением в дистиллированной воде. Чистые фильтры хранят в плотно закрытом бюксе. Допустимо использование бумажных фильтров «синяя лента», промытых дистиллированной водой. При фильтровании через любой фильтр первые порции фильтрата следует отбросить. Пробы помещают в стеклянную или полиэтиленовую посуду с плотно закрывающейся пробкой. Объем пробы не менее 100 см³.

Нитриты являются весьма неустойчивым соединением, поэтому анализ нужно провести в течение двух часов после отбора пробы. Допускается хранение проб в течение суток при охлаждении до 3 - 5 °C. Использование каких-либо консервантов при этом не является эффективным. Более длительное хранение возможно при замораживании пробы.

10 Подготовка к выполнению измерений

10.1 Приготовление растворов и реактивов

- 10.1.1 Раствор реактива Грисса
- 10.1.1.1 Приготовление из готового препарата

В бюксе взвешивают 10 г сухого, растертого в ступке до однородной массы реактива Грисса и растворяют его в 100 см³ 12 %-ного раствора уксусной кислоты. Раствор фильтруют через бумажный фильтр «белая лента». Хранят в склянке из темного стекла с притертой или полиэтиленовой пробкой в холодильнике не более недели. При комнатной температуре допустимо хранение не более 2 сут.

10.1.1.2 Приготовление из 1-нафтиламина и сульфаниловой кислоты

Раствор сульфаниловой кислоты. Взвешивают 2,0 г сульфаниловой кислоты и растворяют её в 300 см³ 12 %-ного раствора уксусной кислоты. Для ускорения растворения смесь можно слегка подогреть в горячей воде. Раствор устойчив в течение нескольких месяцев при хранении в темном месте.

Раствор 1-нафтиламина. В бюксе взвешивают 0,1 г 1-нафтиламина, растворяют его в нескольких каплях ледяной уксусной кислоты, добавляют 150 см³ 12 %-ного раствора уксусной кислоты и перемешивают. Раствор фильтруют и хранят в темной склянке в прохладном месте не более 1 мес.

Раствор реактива Грисса готовят, смешивая равные объемы растворов сульфаниловой кислоты и 1-нафтиламина. Раствор используют в день приготовления.

10.1.2 Раствор уксусной кислоты, 12 %-ный

К 440 см³ дистиллированной воды приливают 60 см³ ледяной уксусной кислоты и перемешивают. Хранят в склянке с притертой пробкой.

10.2 Приготовление градуировочных растворов

10.2.1 Градуировочные растворы готовят из ГСО с концентрацией нитрит-иона 1,00 мг/см³ (0,3045 мг/см³ нитритного азота).

Для приготовления градуировочного раствора № 1 вскрывают ампулу, и ее содержимое переносят в сухую чистую коническую пробирку. С помощью чистой сухой градуированной пипетки вместимостью 5 см³ отбирают 4,10 см³ образца и переносят в мерную колбу вместимостью 50 см³. Объем в колбе доводят до метки дистиллированной водой и перемешивают. Массовая концентрация нитритного азота в градуировочном растворе составляет 25,0 мг/дм³ (если концентрация нитрит-ионов в ГСО не равна точно 1,00 мг/см³, рассчитывают массовую концентрацию нитритного азота в градуировочном растворе № 1 конкретного образца, либо пересчитывают соответственно концентрации стандартного образца, который необходимо отобрать, чтобы получить раствор с концентрацией нитритного азота 25,0 мг/дм³).

Градуировочный раствор № 1 следует хранить в холодильнике в плотно закрытой склянке из темного стекла не более 5 сут.

Для приготовления градуировочного раствора № 2 пипеткой с одной отметкой отбирают $10.0~{\rm cm}^3$ градуировочного раствора № 1, помещают его в мерную колбу вместимостью $100~{\rm cm}^3$ и доводят до метки дистиллированной водой. Массовая концентрация нитритного азота в градуировочном растворе № 2 составляет $2.50~{\rm mr/дm}^3$. Раствор хранению не подлежит.

10.2.2 При отсутствии ГСО допускается в качестве градуировочных растворов использовать аттестованные растворы, приготовленные из нитрита натрия. Методика приготовления аттестованных растворов приведена в приложении А.

10.3 Установление градуировочных зависимостей

Для приготовления образцов для градуировки в мерные колбы вместимостью $100 \text{ см}^3 \text{ с}$ помощью градуированных пипеток вместимостью 1, 2, 5 и 10 см^3 приливают 0; 0,4; 0,8; 1,6;

Документ скачан с портала нормативных документов www.OpenGost.ru

2,4; 3,2; 4,0; 6,0; 8,0; 10,0 см 3 градуировочного раствора № 2 с массовой концентрацией нитритного азота 2,50 мг/дм 3 .

Объемы растворов доводят до меток на колбах дистиллированной водой и перемешивают. Массовая концентрация нитритного азота в полученных растворах составит соответственно 0; 0,010; 0,020; 0,040; 0,060; 0,080; 0,100; 0,150; 0,200; 0,250 мг/дм 3 .

Мерным цилиндром вместимостью 25 см³ отбирают дважды по 25 см³ каждого из приготовленных растворов, помещают их в сухие конические колбы вместимостью 50 см³, приливают 1,5 см³ раствора реактива Грисса и тщательно перемешивают. Через 40 мин измеряют оптическую плотность каждого из полученных растворов при длине волны 520 нм на фотометрах с непрерывной разверткой спектра или 540 нм на фотометрах, снабженных светофильтрами.

Образцы с концентрацией нитритного азота от 0,010 мг/дм³ до 0,080 мг/дм³ измеряют в кювете с толщиной поглощающего слоя 5 см, образцы с концентрацией от 0,080 до 0,250 мг/дм³ в кювете с толщиной поглощающего слоя 1 см относительно дистиллированной воды. Оптическую плотность холостого опыта измеряют в обеих кюветах. Среднее значение оптической плотности холостого опыта вычитают из усредненной оптической плотности растворов, содержащих нитриты.

Градуировочные зависимости оптической плотности от массовой концентрации нитритного азота для каждого из диапазонов измерений рассчитывают методом наименьших квадратов.

Градуировочные зависимости устанавливают при использовании новой партии реактива Грисса и при замене измерительного прибора.

10.4 Контроль стабильности градуировочной характеристики

10.4.1 Контроль стабильности градуировочной характеристики проводят каждый раз перед выполнением измерений массовой концентрации нитритного азота в серии проб. Средствами контроля являются образцы, используемые для установления градуировочной зависимости по 10.3 (не менее 3 для каждой градуировочной зависимости).

Допускается проводить контроль стабильности градуировочной характеристики для одного диапазона измерений, если второй диапазон не будет использован для расчета результатов измерений в данной серии проб. Градуировочная характеристика считается стабильной при выполнении следующих условий:

$$|X - C| \le \sigma_R, \tag{1}$$

где X - результат контрольного измерения массовой концентрации нитритного азота в образце, мг/дм 3 ;

C - приписанное значение массовой концентрации нитритного азота в образце, мг/дм 3 ;

 σ_R - показатель воспроизводимости для концентрации C, мг/дм³ (таблица 1).

Если условие стабильности не выполняется для одного образца для градуировки, необходимо выполнить повторное измерение этого образца для исключения результата, содержащего грубую погрешность. При повторном невыполнении условия, выясняют причины нестабильности, устраняют их и повторяют измерение с использованием других образцов, предусмотренных методикой. Если градуировочная характеристика вновь не будет удовлетворять условию (1), устанавливают новую градировочную зависимость.

10.4.2 При выполнении условия (1) учитывают знак разности между измеренными и приписанными значениями массовой концентрации нитритного азота в образцах. Эта разность должна иметь как положительное, так и отрицательное значение, если же все значения имеют один знак, это говорит о наличии систематического отклонения. В таком случае требуется установить новую градуировочную зависимость.

11 Выполнение измерений

11.1 Мерным цилиндром вместимостью 25 см³ отбирают две аликвоты по 25 см³ профильтрованной анализируемой воды, помещают их в сухие конические колбы вместимостью 50 см³, добавляют по 1,5 см³ раствора реактива Грисса и тщательно перемешивают. Через 40 мин измеряют оптическую плотность полученных растворов при длине волны 520 нм на фотометрах с непрерывной разверткой спектра или 540 нм на фотометрах, снабженных светофильтрами, относительно дистиллированной воды в кювете с толщиной поглощающего слоя 1 см или 5 см в зависимости от содержания нитритов. Окраска полученных растворов устойчива не более 2 ч.

Если измеренное значение оптической плотности пробы превышает таковое для последней точки градуировочной зависимости для кюветы с толщиной поглощающего слоя 5 см, то проводят измерение оптической плотности в кювете толщиной поглощающего слоя 1 см. Если же полученное значение оптической плотности превышает значение таковой для последней точки в кювете с толщиной поглощающего слоя 1 см, то проводят повторное измерение после разбавления пробы. Для разбавления отбирают аликвоту от 5 до 50 см³ исходной воды пипеткой с одной отметкой, помещают аликвоту в мерную колбу вместимостью 100 см³, доводят до метки дистиллированной водой и перемешивают. Отбираемую для разбавления аликвоту следует выбирать таким образом, чтобы массовая концентрация нитритного азота в пробе после разбавления находилась в пределах от 0,100 до 0,250 мг/дм³.

Одновременно с пробами выполняют холостой опыт, используя дважды по 25 см³ дистиллированной воды.

11.2 Если анализируемая проба окрашена или слегка мутная, то отдельно проводят измерение ее собственной оптической плотности, добавив к 25 см³ пробы 1,5 см³ раствора сульфаниловой кислоты.

При значительной цветности анализируемой воды целесообразно устранение ее обработкой пробы суспензией гидроксида алюминия (приготовление суспензии описано в приложении Б).

В коническую колбу вместимостью 250 см³ помещают 100 - 120 см³ анализируемой воды, приливают 3 - 4 см³ суспензии гидроксида алюминия и встряхивают до обесцвечивания жидкости. Дают пробе отстояться несколько минут и фильтруют через бумажный фильтр «белая лента», промытый дистиллированной водой. Первую порцию фильтрата следует отбросить.

11.3 Определению мешают сильные восстановители, а также некоторые металлы: висмут (III), ртуть (II), сурьма (III), золото (III), серебро (I), хлорплатинаты, метаванадаты в высоких концентрациях, как правило, не встречающихся в природных или очищенных сточных водах.

Мешающее влияние может оказывать значительное количество железа (III), а также меди (II), вызывающей каталитическое разложение азокрасителя. Однако при соблюдении условий выполнения измерений, регламентированных методикой, их мешающим влиянием на практике можно пренебречь.

Наиболее существенное влияние оказывает активный хлор или хлорамин (более $0.05\,$ мг/дм 3). При высокой концентрации нитритов уменьшить влияние указанных веществ можно разбавлением.

12 Вычисление и оформление результатов измерений

12.1 Вычисляют значение оптической плотности A_x , соответствующее концентрации нитритного азота в пробе по формуле

$$A_{x} = A - A_{1} - A_{2}, \tag{2}$$

- где А значение оптической плотности анализируемой пробы воды, полученное в ходе определения;
- A_1 значение собственной оптической плотности пробы, к которой добавлен только раствор сульфаниловой кислоты;
 - A_2 среднее значение оптической плотности холостой пробы.
- 12.2 По соответствующей градуировочной зависимости находят массовую концентрацию нитритного азота в анализируемой пробе воды X, мг/дм³, согласно полученному значению оптической плотности A_x .

Если измерение проводилось после разбавления исходной пробы, то концентрацию нитритного азота в исходной пробе воды X, мг/дм 3 , рассчитывают по формуле

$$X = C \cdot \eta, \tag{3}$$

где C - массовая концентрация нитритного азота, найденная по градуировочной зависимости, мг/дм 3 ;

η - степень разбавления исходной пробы воды.

Если для устранения цветности использовали суспензию гидроксида алюминия, то в полученный результат следует ввести поправку на разбавление - умножить результат на коэффициент 1,03.

12.3 Результат измерений в документах, предусматривающих его использование, представляют в виде:

$$\overline{X} \pm \Delta$$
, mg/gm³ (P = 0,95), (4)

- где \overline{X} среднее арифметическое значение двух результатов измерений, разность между которыми не превышает предела повторяемости г (2,77 σ_r), мг/дм³. Значения σ_r приведены в таблице 1. При превышении предела повторяемости следует поступать в соответствии с 13.2;
- $\pm \Delta$ границы характеристик погрешности результатов измерений для данной массовой концентрации нитритного азота (таблица 1), мг/дм³.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности. Последние не должны содержать более 2-х значащих цифр.

12.4 Допустимо представлять результат в виде:

$$\overline{X} \pm \Delta_n$$
 (P = 0.95) при условии $\Delta_n < \Delta$, (5)

где $\pm \Delta_{\rm n}$ - границы характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений, мг/дм³.

Примечание - Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения $\Delta_{\scriptscriptstyle \Pi}=0.84$ с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

- 12.5 Результаты измерения оформляют протоколом или записью в журнале, по формам, приведенным в Руководстве по качеству лаборатории.
- 13 Контроль качества результатов измерений при реализации методики в лаборатории

13.1 Общие положения

13.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости, погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).
- 13.1.2 Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

13.2 Алгоритм оперативного контроля повторяемости

- 13.2.1 Оперативный контроль повторяемости осуществляют для каждого из результатов измерений, полученных в соответствии с методикой. Для этого отобранную пробу воды делят на две части, и выполняют измерение в соответствии с разделом 11.
 - 13.2.2 Результат контрольной процедуры r_{κ} , мг/дм³ рассчитывают по формуле

$$r_{K} = |X_{1} - X_{2}|, \tag{6}$$

где X_1 , X_2 - результаты измерений массовой концентрации нитритного азота в пробе, мг/дм 3 .

13.2.3 Предел повторяемости r_n , мг/дм³, рассчитывают по формуле

$$r_n = 2{,}77\sigma_r, \tag{7}$$

где σ_r - показатель повторяемости методики, мг/дм³ (таблица 1).

13.2.4 Результат контрольной процедуры должен удовлетворять условию

$$r_{\kappa} \le r_{n}. \tag{8}$$

13.2.5~ При несоблюдении условия (8) выполняют еще два измерения и сравнивают разницу между максимальным и минимальным результатами с нормативом контроля равным $3,6\sigma_r$. В случае повторного превышения предела повторяемости, поступают в соответствии с разделом 5 ГОСТ Р ИСО 5725-6.

13.3 Алгоритм оперативного контроля процедуры выполнения измерений с использованием метода добавок

- 13.3.1 Оперативный контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.
 - 13.3.2 Результат контрольной процедуры K_{κ} , мг/дм³, рассчитывают по формуле

$$\mathbb{K}_{\kappa} = |\overline{\mathbf{X}}' - \overline{\mathbf{X}} - \mathbf{C}|, \tag{9}$$

- где X' результат контрольного измерения массовой концентрации нитритного азота в пробе с известной добавкой, мг/дм³;
- \overline{X} результат контрольного измерения массовой концентрации нитритного азота в рабочей пробе, мг/дм³;

С - величина добавки, мг/дм³.

13.3.3 Норматив контроля погрешности K, мг/дм³ рассчитывают по формуле

$$\mathbb{K} = \sqrt{\left(\Delta_{nX}\right)^2 + \left(\Delta_{nX}\right)^2},\tag{10}$$

где $^{\Delta_{MS'}}$ - значения характеристики погрешности результатов измерений установленные при реализации методики в лаборатории, соответствующие массовой концентрации нитритного азота в пробе с добавкой, мг/дм³;

 $\Delta_{\pi X}$ - значения характеристики погрешности результатов измерений, установленные в лаборатории при реализации методики, соответствующие массовой концентрации нитритного азота в рабочей пробе, мг/дм 3 .

Примечание - Допустимо для расчета норматива контроля использовать значения характеристик погрешности, полученные расчетным путем по формулам $\Delta_{\tt mg}$ = 0,84 · $\Delta_{\tt g}$ и $\Delta_{\tt mg}$ = 0,84 · $\Delta_{\tt g}$.

13.3.4 Если результат контрольной процедуры удовлетворяет условию

$$|K_{\kappa}| \le K,\tag{11}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (11) контрольную процедуру повторяют. При повторном невыполнении условия (11), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

14 Проверка приемлемости результатов, полученных в условиях воспроизводимости

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости R. При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение предела воспроизводимости рассчитывают по формуле

$$R = 2{,}77\sigma_{R}. \tag{12}$$

При превышении предела воспроизводимости могут быть использованы методы проверки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725-6 или МИ 2881.

Примечание - Проверка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

Приложение А

(рекомендуемое)

Методика

приготовления аттестованных растворов нитритов AP1-N-NO₂ и AP2-N-NO₂ для установления градуировочных характеристик приборов и контроля точности результатов измерений массовой концентрации нитритного азота фотометрическим методом

А.1 Назначение и область применения

Настоящая методика регламентирует процедуру приготовления аттестованных растворов нитритов, предназначенных для установления градуировочных характеристик приборов и контроля точности результатов измерений массовой концентрации нитритного азота в природных и очищенных сточных водах фотометрическим методом.

А.2 Метрологические характеристики

Метрологические характеристики аттестованных растворов приведены в таблице А.1.

Таблица А.1 - Метрологические характеристики аттестованных растворов нитритов

	Значение характеристики для аттестованного	
Наименование характеристики	раствора	
	AP1-N-NO ₂	AP2-N-NO ₂
Аттестованное значение массовой концентрации нитритного	250,0	2,50
азота, $M\Gamma/дM^3$		
Границы погрешности аттестованного значения массовой	2,5	0,03
концентрации нитритного азота ($P = 0.95$), мг/дм ³		

А.З Средства измерений, вспомогательные устройства, реактивы

- А.3.1 Весы лабораторные высокого (II) класса точности по ГОСТ 24104-2001.
- А.3.2 Шкаф сушильный общелабораторного назначения.
- А.З.З Колбы мерные 2-го класса точности исполнения 2, 2а по ГОСТ 1770-74 $250 \text{ cm}^3 - 1 \text{ IIIT.}$ $500 \text{ cm}^3 - 1 \text{ IIIT.}$ вместимостью:

- А.3.4 Пипетка с одной отметкой 2-го класса точности исполнения 2 по ГОСТ 29169-91 вместимостью 5 см³.
 - А.З.4 Стаканчик для взвешивания (бюкс) СВ-19/9 по ГОСТ 25336-82.
 - А.3.5 Воронка лабораторная по ГОСТ 25336-82 диаметром 56 мм.
 - А.3.6 Шпатель пластмассовый.
 - А.3.7 Эксикатор исполнения 2, диаметром корпуса 190 мм по ГОСТ 25336-82.
 - А.3.8 Хлорид кальция обезвоженный по ТУ 6-09-4711-81, ч.
 - А.3.9 Промывалка.
 - А.3.10 Склянка из темного стекла для хранения раствора вместимостью 0,25 дм³.
 - А.3.11 Холодильник бытовой.

А.4 Исходные компоненты аттестованных растворов

- А.4.1 Натрий азотистокислый (нитрит натрия) по ГОСТ 4197-74, х.ч. (допустимо ч.д.а.)
- А.4.2 Вода дистиллированная по ГОСТ 6709-72.

А.5 Процедура приготовления аттестованного раствора нитритов

А.5.1 Приготовление аттестованного раствора AP1-N-NO₂

Для приготовления аттестованного раствора нитритов AP1-N-NO₂ на лабораторных весах высокого класса точности взвешивают в бюксе с точностью до четвертого знака после запятой 0,308 г нитрита натрия NaNO₂, предварительно высушенного в сушильном шкафу при температуре 105 °C в течение 1 ч. Количественно переносят навеску в мерную колбу вместимостью 250 см³, растворяют в дистиллированной воде, доводят объём раствора до метки и перемешивают. Переносят раствор в склянку из темного стекла с хорошо притертой стеклянной или пластиковой пробкой.

Полученному раствору приписывают массовую концентрацию нитритного азота 250,0 $M\Gamma/ДM^3$.

А.5.2 Приготовление аттестованного раствора AP2-N-NO₂

Отбирают пипеткой вместимостью 5 см³ с одной отметкой 5,0 см³ раствора AP1-N-NO₂ и переносят его в мерную колбу вместимостью 500 см³. Объем раствора доводят до метки на колбе дистиллированной водой и перемешивают.

Полученному раствору приписывают массовую концентрацию нитритного азота 2,50 $M\Gamma/дM^3$.

А.6 Расчет метрологических характеристик аттестованных растворов

А.б.1 Расчет метрологических характеристик аттестованного раствора AP1-N-NO₂

Аттестованное значение массовой концентрации нитритного азота C_1 , мг/дм³, рассчитывают по формуле

$$C_1 = \frac{m \cdot 14,01 \cdot 1000 \cdot 1000}{V \cdot 69.00},$$

где m - масса навески нитрита натрия, г;

V - вместимость мерной колбы, см³;

14,01 и 69,00 - молярная масса азота и нитрита натрия, соответственно, г/моль.

Расчет погрешности приготовления аттестованного раствора AP1-N-NO₂ Δ_1 , мг/дм³, выполняют по формуле

$$\Delta_1 = C_1 \cdot \sqrt{\left(\frac{\Delta_{\mu}}{\mu}\right)^2 + \left(\frac{\Delta_{\mu}}{m}\right)^2 + \left(\frac{\Delta_{\nu}}{V}\right)^2}, \tag{A.2}$$

где C_1 - приписанное раствору AP1-N-NO $_2$ значение массовой концентрации нитритного азота, мг/см 3 ;

 Δ_{μ} - предельное значение возможного отклонения массовой доли основного вещества в реактиве от приписанного значения μ , %;

 μ - массовая доля основного вещества (NaNO2) в реактиве, приписанная реактиву квалификации «х.ч.», %;

 $\Delta_{\rm m}$ - предельная возможная погрешность взвешивания, г;

т - масса навески нитрита натрия, г;

 $\Delta_{\rm V}$ - предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см³;

V - вместимость мерной колбы, см³.

Погрешность приготовления аттестованного раствора AP1-N-NO₂ равна:

$$\Delta_1 = 250 \cdot \sqrt{\left(\frac{1}{100}\right)^2 + \left(\frac{0.0002}{0.3079}\right)^2 + \left(\frac{0.30}{250}\right)^2} = 2.5 \,\text{MeV} \cdot \text{cm}^3.$$

А.б.2 Расчет метрологических характеристик аттестованного раствора AP2-N-NO₂

Аттестованное значение массовой концентрации нитритного азота C_2 , мг/дм³, рассчитывают по формуле

$$C_2 = \frac{C_1 \cdot V_1}{V_2}, \tag{A.3}$$

где C_1 - приписанное раствору AP1-N-NO₂ значение массовой концентрации нитритного азота, мг/см³;

 V_1 - объем раствора AP1-N-NO₂, отбираемый пипеткой, см³;

 V_2 - вместимость мерной колбы, см³.

Расчет погрешности приготовления аттестованного раствора AP2-N-NO₂ Δ_2 , мг/дм³, выполняют по формуле

$$\triangle_2 = C_2 \cdot \sqrt{\left(\frac{\triangle_1}{C_1}\right)^2 + \left(\frac{\triangle_{V_1}}{V_1}\right)^2 + \left(\frac{\triangle_{V_2}}{V_2}\right)^2}, \tag{A.4}$$

где C_2 - приписанное раствору AP2-N-NO₂ значение массовой концентрации нитритного азота, мг/дм³;

 Δ_1 - погрешность приготовления аттестованного раствора AP1-N-NO2, мг/дм 3 ;

 C_1 - приписанное раствору AP1-N-NO $_2$ значение массовой концентрации нитритного азота, мг/дм 3 ;

 Δ_{V_1} - предельное значение возможного отклонения объема V_1 от номинального значения, см³:

 ${V}_1$ - объем раствора AP1-N-NO2, отбираемый пипеткой, см 3 ;

 \triangle_{V_3} - предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см³;

 V_2 - вместимость мерной колбы, см³.

Погрешность приготовления аттестованного раствора AP2-N-NO₂ равна:

$$\Delta_2 = 2.5 \cdot \sqrt{\left(\frac{2.5}{250}\right)^2 + \left(\frac{0.03}{5}\right)^2 + \left(\frac{0.4}{500}\right)^2} = 0.029 \text{ MT/gm}^3.$$

А.7 Требования безопасности

Необходимо соблюдать общие требования техники безопасности при работе в химических лабораториях.

2 Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной вероятности P=0.95

		Предел воспроизводимости (значение
Диапазон измерений	Предел повторяемости (для двух	допускаемого расхождения между двумя
массовой концентрации	результатов параллельных	результатами измерений, полученными в
нитритного азота X , мг/дм ³	определений) r, мг/дм ³	разных лабораториях, при вероятности Р =
		0,95) R, мг/дм ³
От 0,010 до 0,250 включ.	$0,003 + 0,14 \cdot X$	$0.006 + 0.18 \cdot X$

- 3 При реализации методики в лаборатории обеспечивают:
- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости, погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм оперативного контроля исполнителем процедуры выполнения измерений приведен в РД 52.24.381-2006.

Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

Дата выдачи свидетельства 30 августа 2005 г.

Главный метролог ГУ ГХИ

А.А. Назарова

СОДЕРЖАНИЕ

Введение

- 1 Область применения
- 2 Нормативные ссылки
- 3 Приписанные характеристики погрешности измерений
- 4 Средства измерений, вспомогательные устройства, реактивы, материалы
- 5 Метод измерения
- 6 Требования безопасности, охраны окружающей среды
- 7 Требования к квалификации операторов
- 8 Условия выполнения измерений
- 9 Отбор и хранение проб
- 10 Подготовка к выполнению измерений
- 11 Выполнение измерений
- 12 Вычисление и оформление результатов измерений
- 13 Контроль качества результатов измерений при реализации методики в лаборатории. 9
- 14 Проверка приемлемости результатов, полученных в условиях воспроизводимости. 11

Приложение А. Методика приготовления аттестованных растворов нитритов AP1-N-NO $_2$ и AP2-N-NO $_2$ для установления градуировочных характеристик приборов и контроля точности результатов измерений массовой концентрации нитритного азота фотометрическим методом