Межгосударственная координационная водохозяйственная комиссия Центральной Азии (МКВК)

Научно-информационный центр МКВК

ПРОЕКТ РЕГИОНАЛЬНАЯ ИНФОРМАЦИОННАЯ БАЗА ВОДНОГО СЕКТОРА ЦЕНТРАЛЬНОЙ АЗИИ

«CAREWIB»

НОВОЕ В ВОДНОМ ХОЗЯЙСТВЕ

Вып. 4, июль 2006 г.

СОДЕРЖАНИЕ ВЫПУСКА:

Машина дождевальная электрифицированная кругового действия (МДЭК) «Кубань-ЛК1» 4
Дождевальная машина ДМУ "Фрегат-Н" кругового действия с модернизированным дождевым поясом для работы на пониженном напоре5
Модернизация дождевальных агрегатов ДДА-100 МА 7
Комплект ирригационный с переносными дождевальными крыльями КИ-58
Дождевальная шланговая установка ДШ-110
Дождевальная шланговая установка ДШ-0,6Пс комплектом оборудования для различных типов полива12
Комплект дождевальный садово-огородный переставной «Росинка-М»14
Модуль стационарной системы импульсно-локального (мелкоструйчатого) орошения садов, виноградников и других насаждений (МИЛОС)16
Комплект синхронно-импульсного дождевания КСИД-118
Система импульсно-локального орошения промышленных теплиц20
Дождевальный аппарат на выдвижном гидранте22
Автоматическое поливное шланговое устройство АШУ-3224
Колесный трубопровод ТКП-9026
Водозаборное устройство ВЗУ28
К проблеме развития адаптивно-ландшафтной системы орошаемого земледелия и повышения его продуктивности
Нормирование и прогнозирование орошения32
Лаборатория агроэкологических исследований

Машина дождевальная электрифицированная кругового действия (МДЭК) «Кубань-ЛК1»

МАШИНА ДОЖДЕВАЛЬНАЯ ЭЛЕКТРИФИЦИРОВАННАЯ КРУГОВОГО ДЕЙСТВИЯ (МДЭК) "КУБАНЬ-ЛК 1" предназначена для полива различных сельскохозяйственных культур, включая высокостебельные, и может быть использована на любых типах почв.

Полив машиной осуществляется дождеванием в движении по кругу относительно неподвижной опоры, к которой осуществляется подача воды и электропитания от закрытой оросительной сети.

Вода оросительной сети подается по трубопроводу, который может быть выполнен, благодаря низкому давлению в нем, из асбестоцементных труб. Перед машиной устанавливается запорная арматура внешней оросительной сети, управляемая сигналами от машины.

Простоту обслуживания и надежность работы обеспечивают автоматические системы управления и защиты машины, позволяющие выполнять процесс полива круглосуточно в автоматическом режиме без участия оператора и, при необходимости, автоматически прекращать полив в заданном месте поля.

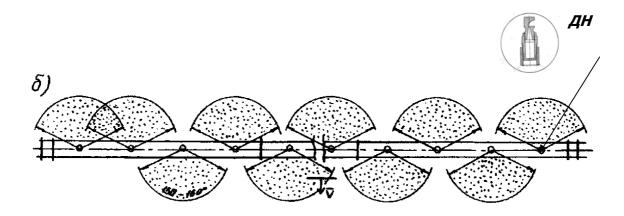
Водопроводящий трубопровод машины состоит из опирающихся на тележки трубопроводов ферменной конструкции. Количество тележек зависит от размеров орошаемого поля и может быть от 4 до 13 шт. С одной стороны трубопровода расположен стояк неподвижной опоры с поворотным коленом, через который происходит забор воды от оросительной сети, а с другой – консольный участок трубопровода, поддерживаемый тросами.

Орошение поля производится низконапорными дождевателями и дождевальными аппаратами, расположенными вверху на водопроводящем трубопроводе. Расположение дождевателей и их малые расходы обеспечивают

равномерность полива, оптимальные диаметры капель и умеренную интенсивность дождя. Норма полива регулируется в широких пределах от 53 до 950 м³/га в зависимости от длины машины и за счет изменения средней скорости перемещения машины, задаваемой со шкафа управления машиной.

Техническая характеристика машины МДЭК-474-70

Рабочее давление на входе, МПа (кг/см²)	0,35 (3,5)
Расход воды при общем нулевом уклоне, л/с	70
Орошаемая площадь, га	72,1
Рабочая длина захвата, м	479
Средняя интенсивность дождя, мм/мин	0,63
Слой осадков за проход, мм	9,1-91
Максимальная потребляемая мощность, кВт	7,5


Дождевальная машина ДМУ "Фрегат-Н" кругового действия с модернизированным дождевым поясом для работы на пониженном напоре

ДОЖДЕВАЛЬНАЯ МАШИНА ДЛЯ РАБОТЫ НА ПОНИЖЕННОМ НАПОРЕ ДМУ "ФРЕГАТ-Н" предназначена для полива различных сельскохозяйственных культур, включая высокостебельные, и может быть использована на любых типах почв.

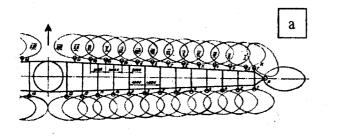
УСОВЕРШЕНСТВОВАНИЕ ДМУ "ФРЕГАТ-Н" заключается в переоборудовании дождевого пояса и замене серийных дождевальных аппаратов на малоинтенсивные, экологически безопасные, энерговодосберегающие и почвощадящие дождеобразующие устройства, представляющие собой дюзу-

переходник и дождевальные короткоструйные насадки секторного действия с улучшенными расходно-напорными характеристиками.

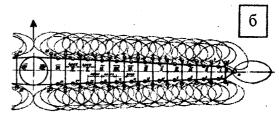
ДН - дождевальная насадка; V - направление скорости движения машины.

Расстановка дождеобразующих устройств модернизированного дождевого пояса на пролете ДМУ "Фрегат-Н" и формирование дождевого облака.

Результаты государственных испытаний усовершенствованной ДМУ «Фрегат-Н» в 2004 г. подтвердили обеспечение машиной следующих технико-экономических эффектов:


- экологическую безопасность полива;
- создание искусственного дождя с размерами капель менее 1,0 мм;
- снижение потерь оросительной воды на сток и инфильтрацию до 15...20%;
- сведение к минимуму образования почвенной корки;
- увеличение равномерности распределения воды по орошаемой площади более 75%;
- уменьшение размеров колеи от ходовых систем машины;
- снижение энергоёмкости полива на 15...18 %.

Модернизация дождевальных агрегатов ДДА-100 МА



МОДЕРНИЗАЦИЯ ДОЖДЕВАЛЬНЫХ АГРЕГАТОВ ДДА-100МА заключается в замене серийных дождевальных насадок кругового действия на малоинтенсивные насадки секторного типа. Конструкция насадок и оптимизированные схемы их расстановок позволяют резко улучшить качество полива.

Предлагаются две схемы расстановки дождеобразующих устройств для расхода воды 80...130 л/с:

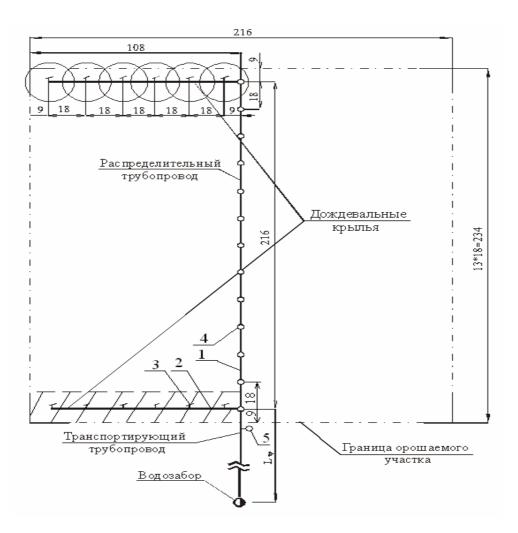
а) для почв средней водопроницаемости

б) для почв низкой водопроницаемости

Обширные исследования модернизированных агрегатов ДДА-100МА в хозяйственных условиях позволили установить следующие ПРЕИМУЩЕСТВА усовершенствованного дождевого пояса агрегата:

- равномерность распределения дождя увеличивается на 60 %, а его интенсивность и крупность капель уменьшается соответственно на 40 % и 30 %. При этом ударное воздействие капель искусственного дождя на почву снижается на 33 %;
- достоковая норма полива повышается на 27 %;

- не наблюдается вымывание семян и образование почвенной корки;
- время прорастания семян после посадки сокращается на 18...20 %;
- выход товарной продукции корнеплодов увеличивается на 14...16 %;
- не наблюдается образование мелкоземного слоя на листовой поверхности растений;
- снижение расхода воды и топлива на полив соответственно составляет около 23 % и 20 %;
- прибавка урожая овощных культур на гектар орошаемой площади составляет в среднем около 20 %.


Комплект ирригационный с переносными дождевальными крыльями КИ-5

КОМПЛЕКТ ИРРИГАЦИОННЫЙ С ПЕРЕНОСНЫМИ ДОЖДЕВАЛЬНЫМИ КРЫЛЬЯМИ КИ-5 предназначен для поливов технических, кормовых, овощных и бахчевых культур, картофеля, сенокосов и пастбищ на торфяных, песчаных, супесчаных и среднесуглинистых почвах на площади 5 га.

Быстросборные трубопроводы, входящие в состав комплекта, могут так же использоваться для пополнения накопительных резервуаров, прудов, для водоснабжения животноводческих помещений по временной схеме и других хозяйственных нужд.

Комплект может осуществлять забор воды от гидрантов закрытой оросительной сети или передвижных насосных станций, устанавливаемых у открытого водоисточника.

Комплект КИ-5 состоит из следующих основных узлов: распределительного трубопровода 1, двух дождевальных крыльев 2 со среднеструйными аппаратами 3, соединительной и запорно-регулирующей арматуры 4 и манометра 5. Распределительный трубопровод длиной 180 м собирается из полиэтиленовых труб ПНД $Д_{\rm y}$ 90 мм длиной 6 м с помощью быстросборноразборных двухсторонних соединительных муфт. Для подсоединения дождевальных крыльев имеется 7 тройников $90\times90\times75$, расположенных через 30 м друг от друга и служащих для присоединения к ним дождевальных крыльев. Крылья длиной 105 м собирают из полиэтиленовых труб ПНД $Д_{\rm y}$ 75мм длиной 6 м и на каждом из них устанавливают 4 дождевальных аппарата типа «Роса-2», «Фрегат»-2 или «Фрегат»-3 с расстоянием между ними 30 м. Причем первый аппарат устанавливают на расстоянии 15 м от начала дождевального крыла. Устанавливаются дождевальные аппараты на стояках, ввинчиваемых в специальные патрубки, имеющиеся на соединительных муфтах.

Полив осуществляется дождевальными крыльями попеременно. В период полива одним из дождевальных крыльев второе крыло разбирают, переносят и собирают на новой позиции.

Актуальность и новизна комплекта заключается в следующем:

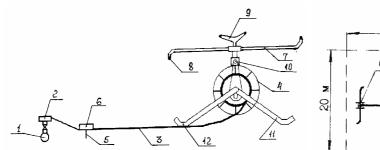
- простота и мобильность конструкции;
- не требует высокой квалификации обслуживающего персонала;
- не подвержен коррозии;

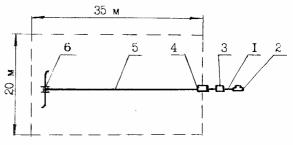
• использование на участках различной конфигурации и уклонах местности, что подтверждено патентом РФ № 37589.

Техническая характеристика

Расход воды, л/с	5,07,0
Напор, м	До 52
Орошаемая площадь, га	5,05
Средняя интенсивность дождя с учетом перекрытия, мм/час	9,212,8
Количество обслуживающего персонала, чел.	1
Количество одновременно работающих дождевальных аппаратов	6
Продолжительность полива с одной позиции при поливной норме 300 ${ m M}^3/{ m Fa}$, час	3,12,4
Площадь одновременного полива, га	0,195
Производительность за 1 час эксплутационного времени, га	0,06700,8

Дождевальная шланговая установка ДШ-1

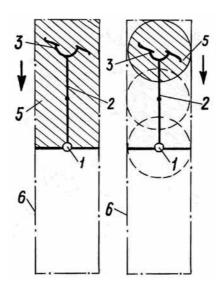

ДОЖДЕВАЛЬНАЯ ШЛАНГОВАЯ УСТАНОВКА ДШ-1 предназначена для орошения различных сельскохозяйственных культур, в том числе пропашных, на фермерских, приусадебных и садово-огородных участках с площа-


дью орошения до 1 га, а также ягодников, стадионов и газонов различного назначения.

Питание установки осуществляется от гидрантов оросительной сети или электробытовых насосов.

Автоматический полив установкой ДШ-1 обеспечивает экологическую безопасность, минимизацию затрат энергии на движение и экономию оросительной воды.

Новизна технических решений, заложенных в конструкцию установки, подтверждена авторским свидетельством РФ № 1729603.



- 1- трубопровод подводящий;
- 2 гидрант; 3 питающий шланг;
- 4 барабан; 5 якорь;
- 6 отсекатель; 7- труба; 8 сопло;
- 9 насадка; 10 редуктор;
- 11 опора; 12 опора

направляющая.

- 1 трубопровод; 2 гидрант;
- 3 якорь; 4 отсекатель;
- 5 питающий шланг;
- 6 дождевальная установка;

Принципиальные схемы устройства и расположения оборудования дождевальной установки ДШ-1 на участке орошения

1- гидрант; 2 – шланг; 3- установка; 5- орошаемая площадь. 6- граница участка

Полив установкой может проводиться в двух режимах: позиционно и в движении.

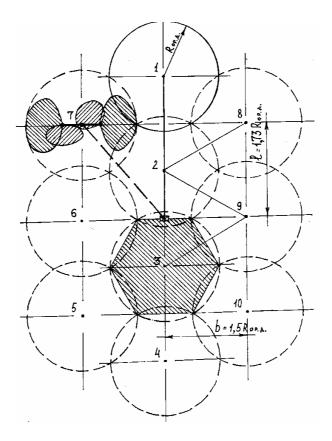
Техническая характеристика

Давление на гидранте, МПа	0,3
Расход воды (максимальный), л/с	1,0
Площадь орошения с одной позиции, га	0,07
Ширина междурядья, м	0,70,9
Масса дождевателя (сухая), кг	1921

Дождевальная шланговая установка ДШ-0,6Пс комплектом оборудования для различных типов полива

ДОЖДЕВАЛЬНАЯ ШЛАНГОВАЯ УСТАНОВКА ДШ-0,6П предназначена для орошения сельскохозяйственных культур, кроме высокостебельных, на фермерских, приусадебных и селекционных участках, декоративных, садовых культур и лекарственных растений в питомниках, газонов различного назначения и цветников.

Установка представляет собой комплект, включающий: дождевальную шланговую установку ДШ-0,6П; питающий шланг; набор сменных насадок для различных видов полива; дополнительные дождевальные звенья для изменения площади орошения на позиции; комплект запасных частей.


Забор воды осуществляется из водопроводной напорной сети или из открытых водоемов с использованием электробытовых насосов.

Актуальность разработанной технологии и конструкции дождевальной шланговой установки обусловлена отсутствием промышленного производства мобильных средств дождевания для участков площадью до 1,0 га.

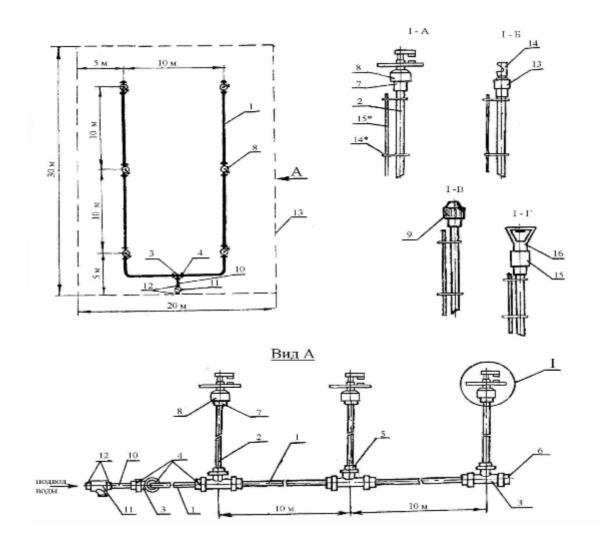
Новизна разработки заключается в усовершенствовании технологии полива дождеванием малых площадей и использовании технических решений, позволяющих эффективно использовать установку для полива всех с/х культур, и подтверждена патентами РФ № 1804289, 40838, 40839.

Полив установкой производится позиционно при вращении дождевальных крыльев, приводящихся в движение реактивной силой струи насадок, установленных на концах крыльев. Поливная норма регулируется временем стоянки на позиции. Модульная компоновка установки позволяет увеличивать площадь орошения до $2000 \, \text{м}^2 \, \text{с}$ питанием от одного гидранта. Установка перемещается на другую позицию при переносе или подтягивании за шланг.

Технологическая схема орошения земельного участка дождевальной шланговой установкой ДШ-0,6П

1 ... 10 – номера позиций $R_{op.д.}$ – радиус орошения установки. I – расстояние между позициями b – расстояние между питающими трубопроводами

Техническая характеристика


Расход воды (максимальный), л/с	1,0
Давление на гидранте, МПа	0,15
Радиус полива, м	до 8,0
Площадь орошения с одной позиции, ${\sf M}^2$	201
Диаметр шланга, мм	20
Масса, кг	14,5

Комплект дождевальный садово-огородный переставной «Росинка-М»

КОМПЛЕКТ ДОЖДЕВАЛЬНЫЙ САДОВО-ОГОРОДНЫЙ ПЕРЕСТАВНОЙ "РОСИНКА-М" предназначен для полива садово-огородных культур, в том числе плодово-ягодных насаждений и цветников на небольших площадях (до 600 m^2) и состоит из быстроразборного пластмассового оборудования.

Рабочими органами служат низконапорные дождевальные аппараты, создающие дождь мелкокапельной структуры, а также насадки кругового и секторного действия для различных видов полива, в том числе противозаморозкового полива.

Схема расположения оборудования:

- 1 распределительный трубопровод; 2 подводящий трубопровод; 3 тройник; 4,5 муфты; 6 муфта-заглушка; 7 штуцер; 8 малорасходный дождевальный аппарат; 9 заглушка поливного трубопровода;
 - 10 патрубок подсоединительный; 11 фильтр; 12 штуцер;
 - 13 граница участка; 14* шпагат крепежный; 15* стойка.

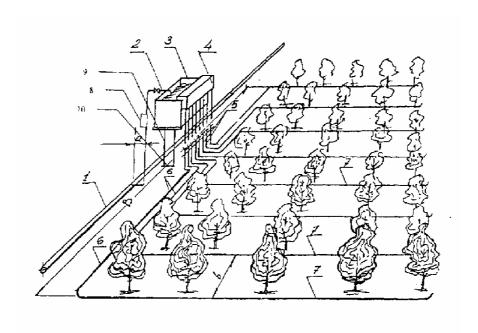
^{* -} в комплект поставки не входят, изготавливаются из подручных материалов.

Используемые в комплекте	"Росинка-М"	дождеобразующие	устройства	И	ИХ
технические характеристики					

	Образцы дождевателей			
Показатели			A	
Диаметр сопла, мм	2,22,6	35	35	12
Давление, МПа	0,150,3	0,150,3	0,150,3	0,050,15
Расход, л/с	0,10,2	0,15	0,20,3	0,1
Радиус полива, м	78	2,85,0	34	3

Модуль стационарной системы импульсно-локального (мелкоструйчатого) орошения садов, виноградников и других насаждений (МИЛОС)

МОДУЛЬ СТАЦИОНАРНОЙ СИСТЕМЫ ИМПУЛЬСНО-КАПЕЛЬНОГО (МЕЛКОСТРУЙЧАТОГО) ОРОШЕНИЯ САДОВ, ВИНОГРАДНИКОВ И ДРУГИХ НАСАЖДЕНИЙ (МИЛОС) предназначен для обеспечения прикорневой зоны растений водой и элементами питания в соответствии с текущим ходом их потребления.


Полив осуществляется расходами воды, подаваемыми импульсами, чередующимися продолжительными паузами при непрерывном и круглосуточном использовании подводимого расхода. Вода и питательный раствор подается из подводящих трубопроводов непрерывно, заданным расходом в накопительную ёмкость и при её накоплении через импульсное распределяющее устройство автоматически подается в один их распределительных трубопроводов, а из него в безуклонно уложенные вдоль рядов насаждений поливные и распределяется вдоль их длины по водовыпускам. После опорожнения ёмкости происходит следующее её наполнение и автоматический слив в другой распределительный трубопровод и т.д., а потом опять в первый по замкнутому кругу, многократно по всем распределительным и поливным трубопроводам.

Механизм импульсного водораспределения, распределительные и поливные трубопроводы выполнены из полиэтилена.

Актуальность. Низкий напор и водовыпуски, увеличенные в 20...25 раз, по сравнению с микроводовыпусками капельного орошения и оригинальная система автоматизации поочередной работы поливных трубопроводов определяет высокую надежность работы.

Новизна комплекта определяется реализацией им технологии импульсной подачи воды с ходом суточного водопотребления и подтверждена авторскими свидетельствами на изобретение N^0N^0 844671, 687169 и тремя патентами РФ N^0N^0 2108548, 2127833, 2183821.

Принципиальная схема МИЛОС

1 - подводящий трубопровод; 2 - питающая труба; 3 - накопительная емкость; 4 - механизм импульсного водораспределения с водовыпусками;

- 5 приемные трубы; 6-рапределительные трубопроводы;
- 7 поливные трубопроводы; 8 стабилизатор расхода;
- 9 опора головного распределительного узла; 10 опорная плита.

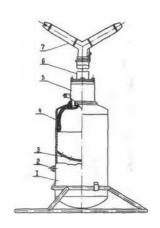
Низкий напор и водовыпуски, увеличенные в 20...25 раз, по сравнению с микроводовыпусками капельного орошения, и оригинальная система автоматизации поочередной работы поливных трубопроводов определяет высокую надежность работы.

Работа поливальщика в процессе полива состоит в очистке фильтра, установленного у стабилизатора, и отключения подачи воды после выдачи заданного объёма, определяемого по счётчику или по заданному времени работы

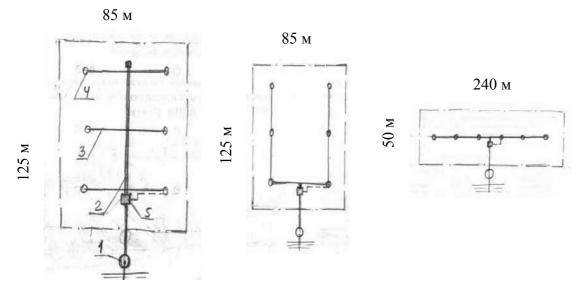
Техническая характеристика

Площадь орошения, га	до 0, 4	Подводимый расход, л/с	до 0,4
Необходимый напор, м	не ме- нее 3	Объём воды за один вы- плеск, л	70300
Средний расход поступаю- щий через распределитель- ное устройство, л/с	0,55	Продолжительность нако- пления емкости, мин.	не ме- нее 3
Диаметр водовыпускных отверстий, мм	1,52,5	Длина поливных трубо- проводов, м	2550
Расстояние между водовыпусками, м	0,92,0		

Комплект синхронно-импульсного дождевания КСИД-1


КОМПЛЕКТ СИНХРОННО-ИМПУЛЬСНОГО ДОЖДЕВАНИЯ КСИД-1 предназначен для орошения плодово-ягодных насаждений, чая и других сельскохозяйственных культур в соответствии с ходом водопотребления.

Комплект стационарно-сезонного типа состоит из 6...8 импульсных дождевателей с генератором командных сигналов и разводящих трубопрово-


дов, выполненных из полиэтиленовых труб диаметром 16...32 мм и может комплектоваться насосной установкой.

Работает комплект в автономном режиме: «накопление - выплеск».

Актуальность и новизна комплекта определяется снижением нагрузки на водоисточник, мобильностью комплекта, обеспечивающего его применение на орошении ведущей культуры в составе севооборота, упрощении и надежности хранения и подтверждена авторскими свидетельствами на изобретение №№ 1664195, 1606024, 1794410 и патентом РФ № 2028768.

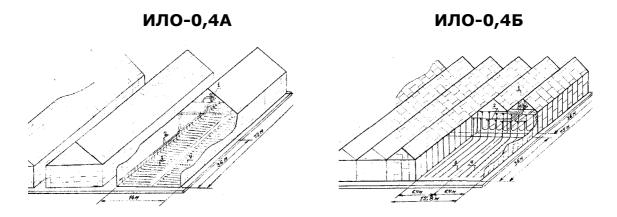
Импульсный дождеватель: I - пневмогидроаккумулятор; 2 - устройство для заполнения пневмогидроаккумулятора воздухом; 3 - перфорированный свод; 4 - эластичная мембрана; 5 - запорный орган; 6 - стояк; 7 дождевальная насадка

Схема расстановки комплекта:

1 - насосный агрегат; 2 - распределительный трубопровод; 3 - поливные трубопроводы; 4 - импульсный дождеватель; 5 - управляющий узел (генератор командных сигналов).

Техническая характеристика

Площадь орошения, га до 1,0 Расход, л/с 1,0 Рабочее давление, МПа не менее 0,65 Средняя интенсивность дождя, мм/мин. до 0,02 Масса оборудования, кг 250


Система импульсно-локального орошения промышленных теплиц

СИСТЕМА ИМПУЛЬСНО-ЛОКАЛЬНОГО ОРОШЕНИЯ ПРОМЫШЛЕННЫХ ТЕПЛИЦ предназначена для автоматизированного полива и подкормки овощей в защищенном грунте путем непрерывного перераспределения порций воды или питательного раствора по секциям поливного участка с дискретной подачей в очаги увлажнения прикорневой зоны растений.

Распределительная и поливная сеть выполнена из полиэтилена. Система выполняется в двух модификациях:

- 1. ИЛО-0,4 А для ангарной теплицы площадью 1000 кв. м².
- 2. ИЛО-0,4 Б для блочной теплицы площадью 900 кв. м².

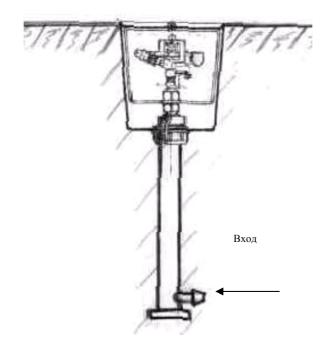
1 - головной узел; 2 - распределительный трубопровод; 3 - поливной трубопровод; 4 – микроводовыпуск

Технология обеспечения растений водой и элементами питания существенно отличается от традиционного орошаемого земледелия:

- вода и удобрения вносятся в едином, технологическом процессе в полном соответствии (синхронно) с текущим ходом их потребления растениями;
- интенсивность (средняя) подачи воды и удобрений в 50-250 раз меньше, чем при существующих технологиях

Система позволяет:

- осуществлять круглосуточный автоматизированный полив овощей, в т. ч. высокостебельных;
- вносить растворимые удобрения с поливной водой;
- исключить периодичность увлажнения;
- не повышать влажность воздуха;
- значительно уменьшить развитие сорняков и грибковые болезней;
- создать условия, не препятствующие уходу за растениями (сухие междурядья);
- повысить урожайность на 20-30%;
- снизить энергозатраты на подачу воды.


Характеристика модулей системы

	ИЛО – 0,4-А	ило – 0,4-Б
Расход, л/с	до 0,4	до 0,4
Напор, м	3,3	3,3
Интенсивность водоподачи, л/м² в сут.	1,0-35,0	1,0-35,0
Площадь орошения, м²	1000	920
Площадь строительная, м²	1008	960
Материалы сети: труба ПНД ø40, м	280	60
труба ПНД Ø16, М труба ПНД Ø25м	-	608
труба ПНД ø10м	670	-

Дождевальный аппарат на выдвижном гидранте

ДОЖДЕВАЛЬНЫЙ АППАРАТ НА ВЫДВИЖНОМ ГИДРАНТЕ предназначен для орошения газонов, ягодников, цветников, овощных и зеленных культур на приусадебных и садово-дачных участках с площадью до 500 м^2 .

Легко применяется на участке при любой фазе развития растений, так как поливной шланг, обеспечивающий расход воды выполнен из гибкой полиэтиленовой трубы диаметром 16 мм.

Возможно его применение в теплицах.

Дождевальный аппарат создает дождь с мелкими каплями и осуществляет полив с небольшой интенсивностью водоподачи.

Рекомендуемые суточные нормы полива колеблются от 1,0 до 6,0 л/м 2 в зависимости от культуры, фазы её развития, погодных и почвенных условий.

Дождевальный аппарат позволяет:

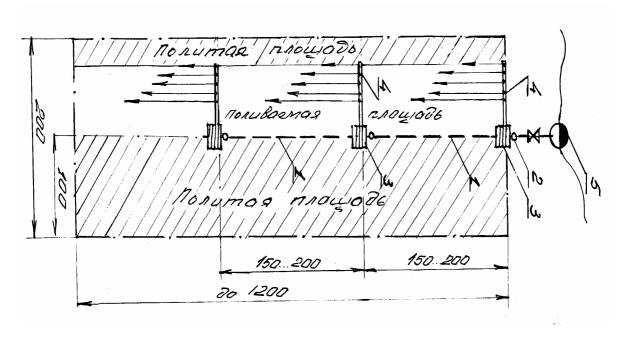
- обеспечить суточную норму полива сельскохозяйственных культур в течение 2-3 часов работы;
- экономить поливную воду;
- исключить образование луж при хорошем увлажнении почвы любого типа;
- создать благоприятный микроклимат для растений в жаркое время суток;
- предотвратить повреждение дождем самых "нежных" растений;
- защитить растения от весенних заморозков;
- повысить урожайность овощных и зеленых культур на 20-30 %.

Техническая характеристика

Расход, л/с Напор, м Площадь орошения , м²	до 0,25 2535 до 500
Радиус действия дождевального аппарата, м	до 13
Интенсивность дождя, мм/мин. Габариты:	0,3
- высота, м	0,57
- ширина, м	0,20
Масса оборудования, кг	1,0

Автоматическое поливное шланговое устройство АШУ-32

АВТОМАТИЧЕСКОЕ ПОЛИВНОЕ ШЛАНГОВОЕ УСТРОЙСТВО (АШУ-32) предназначено для полива сельскохозяйственных пропашных культур по бороздам с шириной междурядий равной 0,6-0,7 или 0,9 м методом импульс-


ного напуска воды в борозды. Устройство состоит из восьми шланговых барабанов, генератора командных импульсов, размоточного механизма (1 на 2 – 3 устройства).

Шланговое поливное устройство состоит из рамы, барабана с гидравлическим приводом и с намотанным на него поливным шлангом, имеющим на его конце отверстия переменного диаметра. Гидроцилиндры на всех устройствах соединены с генератором команд посредством управляющей линии.

Гидроцилиндр может управляться при помощи отдельного клапана.

Возможно применение одного устройства для орошения небольших площадей участков площадью до 4 га.

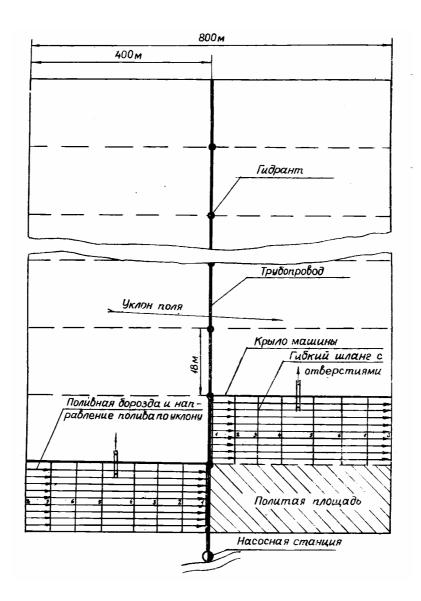
Схема оросительной сети с АШУ

1 - оросительный трубопровод; 2 - гидрант; 3 - АШУ-4; 4 - поливной трубопровод; 5 - насосная станция

Техническая характеристика

Общий поливной расход, л/с	32
Рабочее давление на входе, Мпа	0,3
Площадь, орошаемая за 1 час, га	0,122
Обслуживающий персонал на 2-3 комплекта, чел	1 оператор
Рабочая длина шланга, м	100
Вес, кг	1730

Колесный трубопровод ТКП-90


КОЛЕСНЫЙ ТРУБОПРОВОД ТКП-90 предназначен для полива пропашных сельскохозяйственных культур по бороздам в районах орошаемого земледелия с климатическими условиями, характеризующимися частыми и сильными ветрами, с интенсивным процессом испарения, на участках с минимальным объемом планировочных работ, почвами высокой и средней водопроницаемости.

Трубопровод выполнен на базе колесного дождевального трубопровода ДКШ-64 «Волжанка» и состоит из 2-х крыльев с 16 свободно вращающимися муфтами. В середине каждого крыла установлена приводная тележка с тепловым двигателем.

Муфты монтируются через 50 м в стыках фланцев между каждыми четырьмя колесными секциями, снабженными сливными клапанами.

К муфтам крепятся шлейфы с водовыпусками, расстояние между которыми соответствует ширине междурядья.

Для обеспечения расхода шлейфа до 6 л/с при напоре 10...20 м в их начале устанавливают диафрагмы соответствующего диаметра.

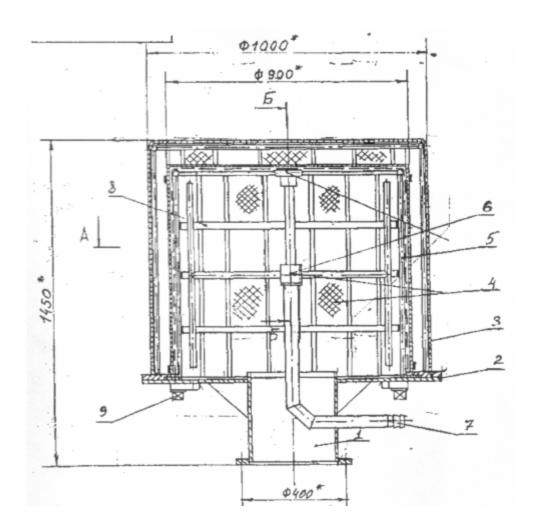
Позиционная работа колесного трубопровода осуществляется при под-ключении его с к гидрантам (через 18 или 36м) стационарной или разборной оросительной сети.

Преимущества колесного трубопровода для полива по бороздам по сравнению с серийно выпускаемой поливной техникой:

- Рациональное использование пропашного трактора при нарезке борозд и проведении послеполивных культиваций;
- Низкий напор на входе;
- Высокая производительность;
- Значительное уменьшение энергозатрат;
- Высокая равномерность водораспределения за счет рассредоточения водного тока;
- Низкие потери на испарение и сброс;
- Понижение требования к выровненности поверхности орошаемого поля;
- Возможность осуществления поливов по коротким бороздам, при сильных ветрах на почвах средней и высокой водопроницаемости;

- Простота конструкции;
- Исключение переходов оператора по политым участкам поля.

Техническая характеристика


до 90
2030
1,44
16
21,2
0,45; 0,70; 0,90
41, 27, 21
0,45
1 на 4 крыла
5000

Водозаборное устройство ВЗУ

ВОДОЗАБОРНОЕ УСТРОЙСТВО ВЗУ предназначено для предотвращения попадания во всасывающую линию насосной станции молоди рыб, водорослей, плавающего мусора, обеспечивает автоматическую промывку фильт-

рующих элементов, что определяет повышение эксплуатационной надежности устройства.

Водозаборное устройство состоит из присоединительного фланца с патрубком 1, опорного диска 2, сороудерживающего барабана 3, сетчатого полотна 4, сетчатого каркаса 5, водоструйной флейты 6, питательного патрубка флейты 7, фиксирующих зажимов 8, болтов крепления сороудерживающего барабана.

Водозаборное устройство в сборе монтируется на всасывающую линию насосной станции с помощью болтов с гайками. Между фланцами устанавливается резиновая прокладка.

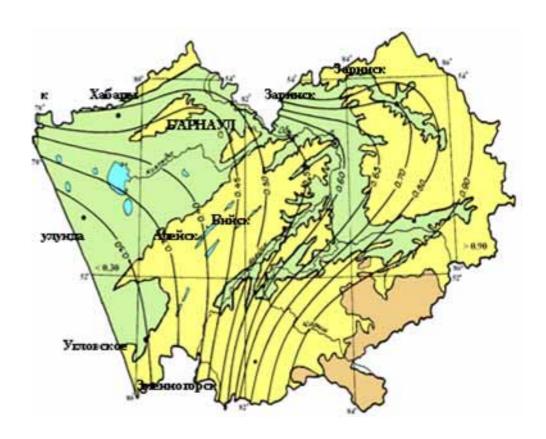
Затяжка болтов с гайками проводится равномерно, чтобы не допустить перекосов фланцев.

При запуске насосной станции вода проходит через сороудерживающий барабан 3, сетчатое полотно 4, сетчатый каркас 5 и поступает во всасывающую трубу насосного агрегата.

При достижении в напорном патрубке определенного давления (расхода) начинает вращаться водоструйная флейта 6, которая не только очищает сетчатое полотно 4, но отпугивает рыбу от водозаборного устройства.

Техническая характеристика

Марка водозаборного устройства (ВЗУ)	300	150	50	25	
Условный проход при- соединительного пат- рубка, мм	350	250	200	150	
Пропускаемый расход, л/с	220÷300	100÷200	50÷95	20÷35	
Расход, подаваемый для вращения флейты, л/с	до 7,5	6,0	5,0	3,0	
Рабочий напор для вра- щения флейты, м	15÷30	15÷30	10÷25	15÷20	
Скорость вращения флейты, об/мин	10÷40	10÷40	10÷40	10÷45	
Минимальный размер защищаемых рыб, мм	10÷12	10÷12	10÷12	10÷12	
Габаритные размеры, (НхД), мм	1450x1060	1100x860	850x660	680x420	
Масса, кг	110	70	40	23	


К проблеме развития адаптивно-ландшафтной системы орошаемого земледелия и повышения его продуктивности

Разработаны методика и компьютерная программа для расчета оросительных, поливных норм и режимов орошения с оценкой показателей тепло-, влагообеспеченности (испаряемости, осадков, коэффициентов природного увлажнения).

Результаты расчетов позволяют:

- провести агроклиматическое районирование территории;
- дифференцировать оросительные нормы и поливные режимы в соответствии с пространственно-временной изменчивостью ресурсов тепла и влаги и их соотношения;
- оценить динамику урожайности орошаемых культур в зависимости от влагообеспеченности;
- разработать основы оперативного управления поливами с гарантией ресурсосбережения и экологической безопасности природной среды.

На рисунке представлено районирование территории Алтая по коэффициенту природного увлажнения Ку – критерия тепло-, влагообеспеченности региона. С коэффициентом Ку функционально связаны расчетные нормы орошения, показанные в таблице.

Оросительные нормы нетто зерновых колосовых по природным зонам Алтайского края в различные по увлажненности годы

Природная зона	Ку	Оросительные нормы нетто, М _{нт,,} мм							
		5%	25%	50%	75%	85%	95%		
Яровая пшеница									
Сухостепная	<0,30	95	145	190	235	260	295		
Степная	0,31- 0,50	45	95	145	195	220	265		
Лесостепная	0,51- 0,80	10	30	70	125	160	200		
Горнолесная	>0,80	0	12	30	65	90	125		

Полученные в результате расчетов нормированные показатели вместе с методикой и компьютерной программой представляют собой важнейший

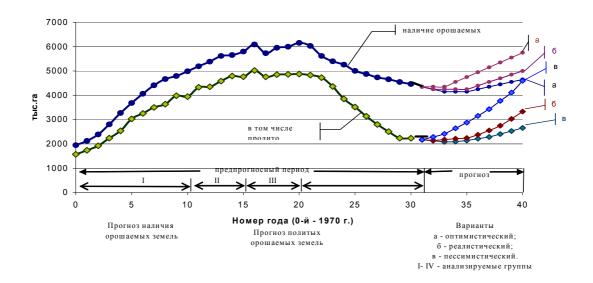
информационный ресурс для информационно-аналитического обеспечения проектирования и реализации адаптивно-ландшафтной системы орошаемого земледелия.

Разработчик предоставляет следующий пакет услуг:

- 1. Методическое обоснование расчетов режимов орошения, алгоритмы для составления компьютерной программы.
- 2. Формирование исходной, информационной базы данных согласно требованиям компьютерной программы.
- 3. Расчет показателей тепловых ресурсов и влагообеспеченности параметров орошения:
 - испаряемость; суммарное водопотребление;
 - оросительные и поливные нормы;
 - коэффициенты увлажнения;
 - кривые обеспеченности всех параметров.
- 4. Районирование территории по коэффициентам увлажнения и всем параметрам.
- 5. Дифференциация и прогноз тепло-влагообеспеченности и режимов орошения.

Нормирование и прогнозирование орошения

ВОДОСБЕРЕГАЮЩЕЕ ЭКОЛОГИЧЕСКИ БЕЗОПАСНОЕ НОРМИРОВАНИЕ ОРОШЕНИЯ


Разработаны и широко апробированы в различных зонах РФ МЕТОДИКА и КОМПЬЮТЕРНАЯ ПРОГРАММА для расчета оросительных и экологически безопасных режимов орошения на основе оценки природной тепло-, влагообеспеченности территории и ее влияния на урожайность сельско-хозяйственных культур на богарных и орошаемых землях в разные по влажности годы.

Их реализация в производственных условиях позволяет обеспечить водосбережение в орошаемом земледелии до 20%, повысить урожайность культур, а также принимать обоснованные решения о целесообразности восстановления и дальнейшего развития оросительных мелиораций, выбора способа, технологических средств и технологий.

ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНЫЙ КОМПЛЕКС (ИВК) ОПЕРАТИВНОГО УПРАВЛЕНИЯ ПОЛИВАМИ предназначен для разработки оперативных сроков и норм полива, составления заявок внесения удобрения и задания операторам поливальщикам, а также для контроля внесения удобрений и выполняемых агротехнических мероприятий. Оперативное управление орошением на основе применения ПК и измерительных приборов позволяет хозяйствам водопользователям обеспечить реализацию ресурсосберегающих и экологически обоснованных технологий полива

МЕТОДИКА ОПРЕДЕЛЕНИЯ ЭКОЛОГИЧЕСКИ ЦЕЛЕСООБРАЗНЫХ ОРОСИТЕЛЬНЫХ НОРМ рекомендуется к применению при установлении размера предельно-допустимых капитальных вложений по сроку их окупаемости с учетом получаемой урожайности орошаемых культур, закупочных цен, стоимости воды, земли, энергоресурсов, уровня оплаты труда и др. факторов. Методика также позволяет определить лимитную цену вновь разрабатываемой поливной техники и проводить технико-экономические исследования влияния урожайности сельхозкультур, их закупочных цен, стоимости воды, земли, энергоносителей, уровня оплаты труда и других показателей на срок окупаемости принимаемых проектных решений.

ПРОГНОЗИРОВАНИЕ И ОБОСНОВАНИЕ МЕЛИОРАЦИИ И ТЕХНИКИ ПОЛИВА

Прогноз научно-технического прогресса в механизации до 2010 года отражает потребность ремкомплектов и дождевальных машин на перспективу. С учетом кризисных явлений в стране разработан ТЭД, в котором определена прогнозная динамика роста (убытия) площади орошения с оценкой объема производства продукции по каждому виду культур, проведен расчет баланса обеспеченности населения продуктами питания.

АГРОХИМИЧЕСКИЕ И ПОЧВЕННО-МЕЛИОРАТИВНЫЕ ИЗЫСКАНИЯ:

- Почва открытого и закрытого грунта оценка уровня плодородия и воднофизических свойств;
- Оросительная вода экологическая оценка пригодности для полива.

Лаборатория агроэкологических исследований

На базе лаборатории проводятся следующие виды анализов.

Почва открытого и закрытого грунта, торф и торфосмеси.

Органическое вещество, РН водный, солевой, минеральные формы азота (N - NO₃, N-NH₄), подвижные формы калия, фосфора, кальций, магний.

По результатам почвенных анализов выдают рекомендации но внесению минеральных и органических удобрений с учетом биологических особенностей выращиваемых культур и особенностей почвы, определяется необходимость проведения известкования, рассчитываются дозы, указываются сроки внесения известковых материалов.

Оросительная вода.

Плотный осадок, кислотность и щелочность, калий, кальций, хлориды, сульфаты, азот аммонийный, нитратный.

По результатам выдается заключение о пригодности использования воды для орошения с/х культур.

Растения.

В свежих образцах растений определяются подвижные формы азота, фосфора, калия с целью оперативного уточнения нуждаемости культур в макроэлементах.

Рекомендации, подготовленные в лаборатории, позволят Вам рационально использовать имеющийся у Вас запас минеральных удобрений, получать экологически безопасную продукцию высокого качества.

новое в водном хозяйстве

Вып. 4, июль 2006 г.

Верстка и дизайн - **Беглов И.Ф.** Подготовка текстов - **Акбаров О.Р.**

Издание осуществлено при финансовой поддержке Швейцарского управления по развитию и сотрудничеству

> Подготовлено к печати и отпечатано в Научно-информационном центре МКВК

Республика Узбекистан, г. Ташкент, м-в Карасу-4, д. 11

www.cawater-info.net/news/technology/