УДК 574.2 (289); 56:574.5
А. А. Филиппов, Ф. Ридель

СОСТАВ МОЛЛЮСКОВ ПОЗДНЕГОЛОЦЕНОВЫХ ОТЛОЖЕНИЙ АРАЛЬСКОГО МОРЯ КАК ОТРАЖЕНИЕ ИСТОРИИ ВОДОЕМА

Общепризнано, что современное высыхание Аральского моря связано, прежде всего, с деятельностью человека, хотя естественные факторы также способствуют этому процессу. Исследования последних лет [см.: 11] однозначно указывают на то, что и до начала современного высыхания экосистема моря неоднократно претерпевала не менее значительные изменения. Понимание современных процессов и тенденций, а также решение задач по восстановлению исходных экосистем Арала невозможно без детального изучения геологической истории водоема. В ходе проведенных ранее палеолимнологических исследований Аральского моря основное внимание уделялось анализу остатков Ostracoda, Foraminifera и Diatomaceae из поверхностного слоя осадков и, реже, — из грунтовых колонок длиной несколько метров [1, 4, 5, 10]. Немногочисленные данные радиоуглеродного анализа были опубликованы Е. П. Михеевым и С. А. Маевым [5]. Отдельными авторами проводилась ревизия палеолимнологических исследований Аральского моря [11]. В настоящее время существует очевидный недостаток информации, которая могла бы пролить свет на изменение Аральской экосистемы в течение последнего тысячелетия. Знания этих крайне необходимы для определения возможного состояния экосистемы моря в ближайшем будущем.

Настоящая работа имела своей целью уточнение характера изменений экосистемы Аральского моря в течение последнего тысячелетия посредством анализа палеобиоценозов, сохранившихся в верхнем слое грунта. При этом основное внимание уделялось анализу сохранившихся раковин моллюсков.

Материалы и методы исследования. Исходным материалом послужили десять коротких грунтовых колонок (длиной 40–67 см), собранных в северной и восточной частях Аральского моря гравитационной грунтовой трубкой в августе и сентябре 1991 г. (рис. 1). Детальное
описание пробоотбора опубликовано в работе [12]. Четыре из десяти кернов (№ 48, 83, 103, 129) были разрезаны на части сразу после отбора; причем длину отрезков устанавливали произвольно на основе внешних литологических различий отдельных участков грунтовых колонок. Оставшиеся шесть кернов были сохранены нетронутыми и разделены на секции только в октябре 2001 г., когда проводились обработка всего кернового материала и исследования состава палеобиоценозов. В 2001 г. хорошо сохранившиеся керны, как правило, разрезались на секции длиной по 4 см. Сломанные и плохо сохранившиеся колонки были разрезаны на секции большего размера с тем, чтобы избежать смешивания материала из разных слоев. Вследствие этого размер отдельных участков кернов существенно варьировал (табл. 1). Поскольку длина сухих колонок, измеренная в 2001 г., отличалась от оригинальных размеров, определенных в ходе пробоотбора, оригинальная длина каждого отрезка рассчитывалась путем умножения его длины в сухом состоянии на отношение оригинальной длины керна к длине сухого керна.

Таблица 1

Нижняя граница исследованных участков кернов (в см). Нумерация кернов, как в работе [12]

<table>
<thead>
<tr>
<th>Номер керна</th>
<th>48</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>95</th>
<th>103</th>
<th>128</th>
<th>129</th>
<th>136</th>
<th>139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сектор 1</td>
<td>1,5</td>
<td>4,2</td>
<td>4,3</td>
<td>1,5</td>
<td>3,8</td>
<td>5,0</td>
<td>13,3</td>
<td>5,0</td>
<td>5,4</td>
<td>5,2</td>
</tr>
<tr>
<td>2</td>
<td>3,5</td>
<td>8,4</td>
<td>8,5</td>
<td>3,0</td>
<td>7,5</td>
<td>10,0</td>
<td>26,7</td>
<td>10,0</td>
<td>10,8</td>
<td>10,4</td>
</tr>
<tr>
<td>3</td>
<td>7,0</td>
<td>12,5</td>
<td>12,8</td>
<td>3,6</td>
<td>11,3</td>
<td>16,0</td>
<td>40,0</td>
<td>16,0</td>
<td>16,2</td>
<td>15,1</td>
</tr>
<tr>
<td>4</td>
<td>10,0</td>
<td>16,7</td>
<td>17,1</td>
<td>7,5</td>
<td>15,0</td>
<td>20,0</td>
<td>22,0</td>
<td>21,6</td>
<td>19,7</td>
<td>19,7</td>
</tr>
<tr>
<td>5</td>
<td>14,0</td>
<td>20,9</td>
<td>21,4</td>
<td>13,5</td>
<td>30,1</td>
<td>24,0</td>
<td>30,0</td>
<td>27,0</td>
<td>24,3</td>
<td>24,3</td>
</tr>
<tr>
<td>6</td>
<td>20,0</td>
<td>25,1</td>
<td>25,6</td>
<td>19,5</td>
<td>47,0</td>
<td>30,0</td>
<td>38,0</td>
<td>32,4</td>
<td>28,9</td>
<td>28,9</td>
</tr>
<tr>
<td>7</td>
<td>30,0</td>
<td>29,3</td>
<td>29,9</td>
<td>24,5</td>
<td>35,0</td>
<td>46,0</td>
<td>37,8</td>
<td>33,6</td>
<td>33,6</td>
<td>33,6</td>
</tr>
<tr>
<td>8</td>
<td>40,0</td>
<td>33,5</td>
<td>34,2</td>
<td>28,5</td>
<td>36,0</td>
<td>52,0</td>
<td>43,2</td>
<td>39,4</td>
<td>39,4</td>
<td>39,4</td>
</tr>
<tr>
<td>9</td>
<td>51,0</td>
<td>37,6</td>
<td>38,5</td>
<td>37,0</td>
<td>39,0</td>
<td>59,0</td>
<td>48,6</td>
<td>44,0</td>
<td>44,0</td>
<td>44,0</td>
</tr>
<tr>
<td>10</td>
<td>63,0</td>
<td>41,8</td>
<td>42,7</td>
<td>38,0</td>
<td>44,0</td>
<td>54,0</td>
<td>45,0</td>
<td>45,0</td>
<td>45,0</td>
<td>45,0</td>
</tr>
<tr>
<td>11</td>
<td>67,0</td>
<td>46,0</td>
<td>47,0</td>
<td>41,0</td>
<td>49,0</td>
<td>49,0</td>
<td>49,0</td>
<td>49,0</td>
<td>49,0</td>
<td>49,0</td>
</tr>
<tr>
<td>12</td>
<td>45,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Каждая изолированная секция колонки грунта помещалась в 4 %-ный раствор H₂O₂ на 15–20 ч., затем промывалась и просушивалась через сите с размером ячей 0,25 мм. Останки живых организмов выбирали из отсевного материала, после чего определяли их таксономическую принадлежность и обилие в каждой секции.

Для определения основных закономерностей смены видов за временной интервал, охарактеризованный кернами, данные о видовом составе и количественной представленности были проанализированы с помощью кластерного анализа. Для этого данные по обилию моллюсков в каждой секции были ранжированы следующим образом: 0,5 — присутствуют только обломки раковины, 1 — 1–2 целых экз., 2 — 3–5 экз., 3 — 6–10 экз., 4 — 11–20 экз., 5 — более 20 экз. Сходство между отдельными секциями было рассчитано с использованием индекса процентного сходства

$$PSC_{ij} = 200 \frac{\sum_{k=1}^{n} \min(x_{ik}, x_{jk})}{\sum_{k=1}^{n} (x_{ik} + x_{jk})},$$

где PSC_{ij} — индекс сходства секций i и j, x_{ik} и x_{jk} — обилие вида k в секции i и в секции j соответственно, в баллах.

Для кластеризации матрицы сходства применялся метод среднего взвешенного [7]. В итоге кластеризации были выделены палеобиоценозы, характеризующиеся специфическим видовым составом и собственным уровнем количественного развития отдельных таксонов. Кластерный анализ был проведен с использованием компьютерной программы MVSP 3.12 (Kovach Computing Services).
Результаты исследования. Всего в кернах были обнаружены раковины 4 таксонов брахиопод моллюсков (Caspiohydrobia sp., Turricaspia cf. spica (Eichwald), Theodoxus palmatus Leedholm, Valvata macrostoma Moerch) и 6 видов двустворчатых моллюсков (Abra tessellata (Philippi), Dreissena caspia (Eichwald), Dreissena polymorpha (Pallas), Cerastoderma ligusticum (Issel), Cerastoderma rhomboides (Lamarck) и Hypanis minima (Ostroumoff)).

Раковины моллюсков р. Caspiohydrobia встречались в больших количествах во всех проанализированных кернах и практически по всей их протяженности. Они распределялись вдоль длины колонок неравномерно, чаще демонстрируя максимальное обилие в самых нижних и самых верхних частях. Такое распределение было особенно характерно для колонок, собранных в Большом Аравском море на значительном удалении от берега (№ 81—83, 103, 136, 139), в то время как в кернах, полученных ближе к берегу, наблюдалась иная картина. В колонке № 95 раковины были распределены достаточно равномерно, в кернах № 48 и 129 скопления раковин встречались только в верхних частях, в то время как нижние части были практически их лишены.

Раковины T. cf. spica наблюдались в достаточно больших количествах (всего более 100 экз.) в нижних частях кернов 136 и 139, с максимальным обилием в их основании. Еще несколько экземпляров были обнаружены в самой нижней части колонки № 95. Обилие вида в разных секциях варьировало аналогично обилию Caspiohydrobia. Хотя большинство раковин было сломано, несколько десятков из них сохранились достаточно хорошо.

Раковины T. pallasi были немногочисленны в кернах, и каких-либо закономерностей в их вертикальном распределении не наблюдалось. Кластерный анализ (см. ниже) выявил их приуроченность к участкам, содержащим большие количества раковин Dreissena, Caspiohydrobia и головных капсул хирономид.

Раковины V. macrostoma были найдены только в самой нижней части керна № 95 в количестве 5 экз. Интересно, что в той же самой секции было обнаружено несколько раковин Hypanis и Abra.

Раковины A. ovata были отмечены в верхней части всех исследованных кернов. В пробах 103, 136 и 139 их распределение было ограничено только верхними частями колонок, тогда как в пробах 81, 82 и 129 они были обнаружены и в более низких горизонтах.

Раковины Dreissena spp. были очень многочисленны в керновом материале. Моллюски были отмечены практически во всех проанализированных частях колонок, хотя их обилие в отдельных кернах сильно варьировало. Максимальное обилие было зарегистрировано в нижних частях кернов 82 и 139, достаточно большое — в верхних частях кернов 81, 136 и 139.

Раковины сердцевидок Cerastoderma spp. были отмечены во всех колонках, но распределение их сильно варьировало от керна к керну. В большинстве случаев отмечалось бимодальное распределение с максимумами обилия в верхних и нижних частях колонок. Такие пики численности отсутствовали в верхних частях пробы 136 и в нижних частях пробы 48. В целом вертикальное распределение Cerastoderma spp. было сходным с таковым Caspiohydrobia. Интересно отметить, что максимальное обилие сердцевидок в верхних частях кернов, как правило, отмечалось на одну секцию выше, чем максимальное обилие H. minima.
Раковины *H. minima* также отмечались во всех проанализированных кернах, но в основном только в верхних их частях. Наиболее глубокое положение раковины занимали в кернах 81–83, самое поверхностное — в кернах 136 и 139.

Кроме раковин моллюсков, в кернах также были обнаружены головные капсулы хирономид, домики ручейников, остатки крабов, а также остатки талломов растений и плоды *Ruppia sp*. Хирономиды в максимальном количестве отмечены в керне 129 (секции 4–9), домики ручейников отмечены только в керне 81 (секции 6 и 7), растения были особенно обильны в колонках № 103 и 129, плоды руппии были обнаружены только в секциях 8 и 9 керна № 82.

Совокупности участков кернов, сходные по составу и обилию раковин моллюсков, определялись в ходе кластерного анализа. Кроме моллюсков, в анализ были включены также данные по обилию хирономид и остатков растений. Для того чтобы уменьшить разброс данных, плохо сохранившиеся или собранные слишком близко от берега керны в рассмотрение не принимались. Последние не учитывались в связи с тем, что они с большой вероятностью могли содержать аллютохтонный материал, смытый с рядом расположенных прибрежных обрывов и перенесенный в месте отбора проб течениями. По этим причинам только колонки № 81, 82, 83, 103, 136 и 139 из Большого Аравльского моря были использованы для кластерного анализа.

В ходе анализа была получена дендрограмма сходства отдельных участков колонок, которая, для выделения сообществ была рассечена на уровне сходства 65% (рис. 2). Этот уровень сходства был выбран произвольно с единственной целью — получить доступное для интерпретации количество отдельных кластеров, более или менее сходных по своим размерам (т. е. по количеству включенных в них секций), которые можно было бы попытаться связать с теми или иными условиями окружающей среды. Таким образом, было выделено 6 наборов участков кернов, которые характеризовались значительным сходством в отношении видового состава и обилия учтенных таксонов (A–F) (рис. 3).

![Дендрограмма](image)

Рис. 2. Дендрограмма сходства отдельных участков кернов.

Пунктиром показан уровень сходства, использованный для выделения сообществ, A–F — выделенные сообщества. По горизонтальной оси — уровень сходства.
Наиболее характерной чертой сообщества «A», расположенного в верхней части кернов, до глубины 8,5 см, было наличие здесь достаточно большого количества раковин *A. ovata*. В заметных количествах присутствовали также раковины сердцевидок и *Caspiohydrobia*, тогда как раковины *Theodoxus* и останки хирономид полностью отсутствовали (табл. 2).

Сообщество «C», расположенное еще ниже, до глубины 33 см, характеризовалось пониженной численностью раковин моллюсков, что особенно четко прослеживалось в отношении *Hypnis* и *Cerastoderma*. Интересно, что в этом палеоценовом керне № 81 отмечено достаточно большое количество домиков ручейников и головных капсул хирономид, в то время как раковины *Theodoxus* полностью отсутствовали.

Сообщество «E» было выявлено под сообществом «D» только в кернах 136 и 139. Наиболее специфической его чертой было присутствие раковин брюхоногих моллюсков *Turricaspia*. Здесь также отмечалось высокое обилие раковин *Caspiohydrobia* и *Dreissena*, в незначительном количестве присутствовали раковины *Theodoxus*.

Сообщество «F» также было отмечено под сообществом «D», но только в кернах № 81—83. Оно характеризовалось наименьшим из всех выделенных кластеров разнообразием и обилием останков организмов. Наиболее многочисленным компонентом
палеоценоза были *Caspiohydrobia*, которые тем не менее также имели минимальное обилие по сравнению с другими сообществами.

Обсуждение результатов исследования. Анализ кернового материала показал, что раковины моллюсков встречались по всей длине исследованных кернов. Тем не менее отмеченное разнообразие моллюсков в палеоценозах оказалось достаточно низким, учитывая большие размеры водоема. Такое низкое разнообразие, возможно, было связано с крайне нестабильным гидрологическим режимом, существовавшим в водоеме в рассматриваемый период.

Наличие раковин *Caspiohydrobia* spp., *Cerastoderma* spp. и *Dreissena* spp. во всех кернах и практически на всем их протяжении свидетельствует о том, что эти моллюски в течение всего рассматриваемого периода были наиболее стабильным компонентом макрофауны. Очевидно, что в это время в Аравийском море не формировались (по крайней мере, на какой-либо продолжительный срок) условия, неблагоприятные для этих организмов.

Моллюски рода *Turricaspi*a, которые наблюдались в относительно больших количествах только в нижних частях кернов 136 и 139, скорее всего, в действительности населяли Аравийское море в голоцене. Поскольку указанные керны были расположены в центральной части Большого Аравийского моря, ранее высказанная гипотеза [8] о том, что эти раковины перенесены слия с прибрежных террас, вряд ли могла быть поддержана. Отчасти это подтверждается и хорошей сохранностью многих экземпляров, поскольку в случае вымытия из прибрежных террас и последующего их горизонтального транзита раковины были сильно повреждены.

Раковины *V. macrostoma* были найдены только в керне № 95, отобранном в районе, прилегающем к древней дельте Сыр-Дары. Нахождение в той же самой секции, в основании грунтовой колонки, нескольких раковин *Hypanis* и *Aabra* позволяет предположить, что грунты в данном районе были подвержены переотложениям в результате перестройки речного русла. Таким образом, существование *Valvata* в самом водоеме представляется маловероятным. Их раковины вполне могли быть принесены сюда речными водами из соседних водоемов или вымыты речными водами из осадочных пород.

Распределение *A. ovata* в верхней части исследованных кернов является вполне логичным, учитывая, что моллюск был интродуцирован в Аравийское море только в 1960-х гг. [3]. Его нахождение в кернах 81, 82 и 129 в более низких секциях может объясняться способностью данных моллюсков закапываться в грунт на глубину 5–6 см.

Много вопросов вызывает вертикальное распределение раковин *Hypanis*, которые в большинстве случаев были ограничены только верхними участками грунтовых колонок. Согласно З. И. Иззатулеваю и Я. И. Старобогатову [2] *H. minima* достиг Аравийского моря лишь в Ашероне (1, 6–0, 7 млн лет назад). Наши данные позволяют предположить, что *H. minima* попал в Аравию гораздо позже (возможно, повторно).

В целом можно отметить, что все таксоны моллюсков, которые были отмечены в пробах, могут быть отнесены к видам Понт-Каспийской провинции, за исключением *V. macrostoma*, которая является видом, характерным для Палеарктической провинции.
Можно также предположить, что все эти виды, кроме A. ovata и V. macrostoma, попали в Аравское море из Каспия.

Изменение условий окружающей среды в Аравском море в течение последнего тысячелетия нашло однозначное отражение в последовательности 6 палеоценозов, обнаруженных в кернах. Синхронность смены ценозов в различных кернах свидетельствует о неслучайном характере этого варьирования и об отражении реальных крупномасштабных изменений в экосистеме.

Очевидно, наиболее древними из найденных в кернах ценозов были «E» и «F», отмеченные в основании грунтовых колонок. Сообщество «F» развивалось на прибрежных местообитаниях № 81, 82 и 83, тогда как на более глубоких участках № 136 и 139 развивалось сообщество «E». Учитывая, что эти два ценоза сильно различались по составу и обилию моллюсков, можно предположить, что условия здесь также значительно различались. Состав моллюсков ценоза «F», где отмечалось достаточное количество Caspiohydrobia и только отдельные раковины Hypanis, Cerastoderma и Dreissena, позволяют предположить гипергалические условия. Находки единичных раковин Hypanis, которые встречались в основании колонок только в этом сообществе и полностью исчезали в более высоких слоях, возможно, свидетельствуют о наличии этого вида в предшествующий период и исчезновении его в дальнейшем.

Следующее за ценозом «E» сообщество «D» развивалось с увеличением обилия Caspiohydrobia и Cerastoderma, которые предпочитают более осложнанные воды и со значительным уменьшением обилия Dreissena, которая предпочитает более опрэсененную среду. Можно предположить повышение солености вод Арава в этот период. Согласно нашей датировки эти изменения имели место примерно 650–600 лет назад.

Сообщество «C» характеризовалось новым снижением численности Cerastoderma, появлением раковин Hypanis и увеличением обилия Dreissena ssp., хирономид и ручейников. Учитывая, что в ходе последнего осолонения Аральского моря ручейники оказались наиболее чувствительным к осолонению элементом бентоса [9], вероятно, можно говорить о новом существенном понижении солености водоема в период с 1390 по 1475 гг.

Сообщество «B», датированное 1475–1820 гг., характеризовалось ростом численности сердцевидок, и одновременно — максимальным обилием самых разных по своим экологическим потребностям организмов — Caspiohydrobia, Dreissena и Chironomidae. Можно предположить, что соленость в море в этот период была близка к значениям, которые наблюдались в первой половине XX в., т. е. около 10–12 %. В этом же сообществе отмечено максимальное обилие раковин Hypanis, что очень напоминает типичную картину всепышки численности вида после его вселения в новый водоем.

И, наконец, сообщество «A», датированное 1820–1991 гг., характеризуется набором видов, типичным для Аральского моря в этот период и известный из многочисленных научных публикаций. Несколько необычным представляется отсутствие здесь остатков
хирономид и раковин *Theodoxus*. Объяснить это можно лишь спорадическим характером их находок в керновом материале. По крайней мере, в кернах, не использованных для кластерного анализа, эти виды присутствовали и в верхних горизонтах.

В целом проведенные исследования показали, что в позднем голоцене Аральское море отличалось невысоким видовым разнообразием макрофауны. Видовой состав моллюсков в этот период не оставался постоянным: наблюдалось исчезновение одних видов и появление других. Судя по характеру смены сообществ, масштаб изменений условий среды в Аральском море в прошедшем тысячелетии был не менее существенным, чем в современное время, начиная с 1960 г. Очевидно, причины этого явления связаны как с антропогенными, так и с естественными факторами, значение которых требует дальнейшего изучения.

* * *

Автор признателен сотрудникам Freie Universität Berlin Peter Röpstorff и Wolfgang Müller за техническую помощь. Значительная помощь в исследованиях была оказана Dieter Demske (FU Berlin), который идентифицировал плоды водных растений *Ruppia*, использованные для определения возраста осадков.

Финансирование проекта было предоставлено немецкой программой академических обменов (DAAD).

Summary

Filippov A. A., Riedel F. Mollusk taxonomic composition in late Holocene sediments of the Aral Sea as a reflection of the Sea history.

The species composition and abundance from 10 short cores of the Aral Sea sediments have been studied and palaeocenoses have been revealed. The species found were mostly of Caspian and Palaeartic origin. The comparison of palaeocenoses at different horizons showed sharp and significant alterations in the sea ecosystem during the last millennium.

E-mail: paleobio@zedat.fu-berlin.de

Литература

Статья принята к печати 27 сентября 2007.