АНТРОПОГЕННОЕ ИЗМЕНЕНИЕ РЕЖИМА ТЕЧЕНИЯ И СТРУКТУРНЫЕ УРОВНИ РУСЛОВОГО ПРОЦЕССА В НИЖНЕМ ТЕЧЕНИИ Р. АМУДАРЬИ

К.И. Байманов, Г.Т. Шаняев, И.Ж. Асаматддинов, С. Джаманкараев

Каракалпакский филиал САНИИРИ им. В.Д. Журина

(Республика Узбекистан)

Антропогенное изменение режима течения, уменьшение стока, перераспределение его во времени, регулирование, либо даже увеличение в связи с сбросом сточных (коллекторно-дренажных) вод в верховьях рек могут оказывать различные воздействия на русло рек, развивающиеся и существующие в руслах. Характер и степень воздействий зависят от изменения гидрологического и гидрометрического факторов, влияющих на водный режим, а также от факторов времени, в значительной мере определяющих степень происходящих руслоформирований.

В настоящее время в среднем и нижнем течении из р. Амударьи забирают воду для орошения более 60 крупных, средних и мелких каналов: Каршинский с максимальным расходом 250 м3/с; Каракумский с расходом более 600 м3/с; Амударьинский - 400 м3/с; Ташкентский - 500 м3/с; Пахтакорская - 200 м3/с; Кызылкумский - 400 м3/с; Сунгирский - 300 м3/с и др. Кроме того, верховья р. Амударьи на главном протоке действуют Нурекское водохранилище многолетнего регулирования стока (Wp = 12 км3), в низовьях на расстоянии 450 км от устья построено Тумакурское водохранилище (Wp = 5,0 км3), 215 км - Тахта-Ташский гидроузел, 70 км - Международная дамба. Ниже Тумакурского гидроузла на длине 185 км водный русло реки зарегулировано двухсторонними продольными и поперечными дамбами. Эти и ежегодно повторяющиеся наводнения вносили существенные изменения в динамику русловых процессов как в летний так и в зимний периоды, в результате чего на р. Амударье во многих местах ухудшилась руселвая обстановка.

В последние годы наблюдается значительное нарушение экологического состояния особенно в нижнем течении р. Амударьи у Тахта-Ташского и Тумакурского гидроузлов. Данные натурных исследований проведенные нами в 1998-2000 гг. показывают, что в результате ежегодного уменьшения стока р. Амударьи и соответственно транспортирующей способности потока от створа Кипчарак вниз по течению наблюдались повсеместное осаждение наносов и подъем дна как по поперечному профилю, так и по длине реки (рис. 1 и 2).

![Diagram](image)

Рис. 1. Изменение уклонов водной поверхности и средняя отметка дна р. Амударьи на участке между створами г/в Кипчарак и плотины Тахта-Ташского гидроузла.

WATER 2002
Научно-практическая конференция, посвященная 10-летию МКВК

348
Особенно резкое изменение русловых процессов происходило в районе Тахилатского гидроузла. В результатах переформирования русловых процессов в верхнем бьефе образовался устойчивый русло для пропуска малых расходов воды (до 500 м³/с) и наблюдались отход стерига потока у головных водозаборов (каналов Кызкетен, Ханаб, Кенегеза) к противоположному берегу.

В реке Амударье непрерывно происходят русловые деформации из-за больших скоростей (до 2,0-3,0 м/с), изменчивости гидрографа в течение года, особенно в период паводка и сильной подвижности руслу Амударьи, которое сложено из легко размываемых мелких песчаных наносов, диаметр которых не превышает 0,5 мм, а средний диаметр равен 0,10-0,20 мм.

Наблюдения за характером перемещения донных и придонных наносов Амударьи показывают, что это перемещение происходит в виде рифелей и песчаных гряд. Размеры рифелей невелики: высота 5-10 см, длина до 20 см. Рифели образуются главным образом на верхнем скате и на гребне перекатов. В 1998 году при расходе порядка 2000 м³/с, глубина воды в реке 3-4 м, в гидростворе Саамбай нами наблюдались следующие параметры чередования: высота гряд 1,0-1,5 м, длина гряд 50-100 м и скорость движения гряд 1,3-1,7 м/ч.

Для изучения русловых деформаций в нижнем течении Амударьи, то есть выяснить будет ли изменения в положении руслу реки и отдельных русловых образований последовательны в течение года нами были сопоставлены карты разных лет. В русле реки проследить переформирование одних и тех же образований можно только в том случае, если имеются съемки за каждый год. Съемки интересующего нас участка за каждый год можно получить лишь для 1971, 1972 и 1973 гг.

Для нижнего течения Амударьи на изучаемом участке характерно чередование коротких (длиной 2,0-4,0 км) суженных (широкой около 0,7-1,2 км) участков и длинных (длиной 7,0-10 км) расширенных (широкой 3,0-4,0 км) участков.

Сравнение карт русловых съемок привело к следующим результатам. Выяснилось, что деформации русловых образований в плане происходит отндо независимо, а подчиняются определенным закономерностям: русла образования, которые в 1971 и 1972 гг. размывались, в последующие годы намывались, и наоборот - те образования, которые в последующие два года размывались. Оказалось, что если в верхней части размывания русла Амударьи нет размыв, то в низовой части этого размывания наблюдается отложение наносов и рост площадей русловых образований. По мере того как накопившиеся в нижней части размывания русла реки скопления наносов начинают срабатываться и поступать в
расположенное ниже сужение русла реки, в следующем за ним расширения размеры начинают смещаться намывом. Благодаря этому в нижнюю часть расширения начинает поступать меньше наносов, чем раньше, и здесь появляются разрывы русловых образований. Так постепенно зоны размыва и намыва соединяют вниз по реке из одного расширения в другое, расположенных ниже.

Сопоставлением карт разных лет съемки установлено следующее: скорость смещения бровок пойменных берегов составила в среднем 430 м в год; намыв пойменных участков произошел со скоростью 600 м в год; преверхи осередков и островов размывались со скоростью 800 м в год; а их намыв в плане составил 500 м в год; а боковой разрыв этих образований шел со скоростью 280 м в год.

Обучая данные по микрометрическим формам (микросформы) можно сделать вывод о том, что главным фактором, обусловливающим их возникновение и существование, является турбулентность потока - наличие в нем вихревых возмущений. Образование мезоформы (формы среднего размера) требует непрерывных гидравлических условий. Достаточным условием образования мезоформы является неравномерный режим потока, но при этом он может быть установившимся. Объяснить существование микрометрических форм (большие формы) исходя из одних гидравлических условий нельзя, так как в их образовании принимают участие отдельно не один только гидравлические факторы. Для того чтобы объяснить возникновение микрометрических форм необходимо знать свойственный данному водосбору, питаемому участку реки, на котором расположена изучаемая микрометрическая форма, водный режим и срок наносов (режим их поступления, градации крупности частиц, расходы их).

В настоящее время принято считать [2], что русловыми процессами имеют место концентрическую спиральную структуру, позволяющую выделить характерные структурные размеры руслового процесса, определяющиеся различающиеся масштабами действующих факторов и русловыми элементами, а также закономерностями руслового процесса, свойственным каждому структурному уровню. При этом представляет полезным интерес рассмотрения масштабы времени на различных структурных уровнях руслового процесса в целях сопоставления их с изменчивостью речного потока антропогенной природы.

Характер временной масштаба для малого структурного уровня микроформы, видимо, следует принимать, необходимым микрометрическим для ее перемещения на расстояние, равное ее собственной длине Lm при скорости перемещения Cm.

\[T_m = \frac{L_m}{C_m} \]

Принимая наибольшую высоту микроформы Hм и считая их крутизну близкой к 0,04, найдем оценку масштаба времени Tм с использованием следующей зависимости [2] для скорости их перемещения

\[C_m = 0.02 \left(\frac{V^2}{gh} \right)^{1.5} \]

тогда

\[T_m \frac{V}{h} \sim \frac{10}{F_r^{1/2}} \]

Эта оценка показывает, что безразмерный масштаб времени на структурном уровне микроформы не менее чем на три порядка превышает характерный масштаб TмV/Hм=1. В абсолютных величинах Tм, имеет порядок от нескольких десятков часов до нескольких суток, что позволяет считать русловые формы этого уровня быстро приспосабливающимися к характеристикам потока подверженным влиянию антропогенных изменений режима течения.

Средством структурного уровнем являются средние формы (мезоформы), высота и протяженность которых сопряжены с глубиной и шириной потока соответственно. Принимая, что высота мезоформы сопряжена с глубиной реки hм=0,25h при крутизне h/Lм=0,03 и считаю, согласно данным Б.Ф. Сноленко [1], что зависимость (2) пригодна для оценки скорости перемещения мезоформы, определим продолжительность существования мезоформ:

\[T_m \frac{V}{h} \sim \frac{400}{F_r^{1/2}} \]

Эта оценка показывает, что период существования мезоформ в 40-50 раз больше периода существования микроформ и в абсолютных величинах для средних условий может достигать продолжительности нескольких месяцев. Можно считать, что русловые переформированных данного структурного уровня воспринимаются к антропогенному воздействию на сток лишь в том случае, если это изменение стока по продолжительности сопряжено с периодом существования мезоформ или превышает этот период.
Русловые деформации большого структурного уровня (макроформы) могут развиваться лишь при незакрепленной береговой линии и наличии поймы. Как указывает Н.Е. Кондратенко [1] макроформы значительной мере определяются взвешенными наносами между руслом и поймой. Продолжительность меняются природные факторы, влияющие на русловую процесс. Характерным примером макроформы, приводящих к его коренной перестройке, имеет порог нескольких кишечных. Период русловых деформаций в русловом реке, проходящих в легкодеформируемых грунтах зависит в основном от величины наблюдаемых гидрологических циклов (наводнений, межень), а также от состава и содержания проницаемых наносов. Поэтому можно предполагать, что характерный временной период русловых деформаций, приводящих к качественной перестройке русла (р. Амудары) измеряется несколькими месяцами или годами. Ход русловых деформаций на данном структурном уровне может быть изменен и эти изменения должны быть учтены в инженерных проектах.

В последние десятилетия в нижнем течении р. Амудары наблюдается загрязнение речного стока, главным образом в сторону его резкого уменьшения, нарушение режима уровней и скоростей течения, которые привели к развитию необратимых русловых изменений. В этих условиях задача регулирования русловых процессов состоит в том, чтобы обеспечить необходимые гидравлические, эксплуатационные, санитарно-токсикологические и экологические показатели речного стока и водотока в целом.

Решение этой задачи может производиться с использованием комплекса инженерных мероприятий, включающего землеустройство, устройство различных руслоразрабатывающих сооружений, спрямление русловых рек методом саморазмыва, а также очистка сбросных и сточных вод. В этом комплексе должна входить система специального регулирования стока, обеспечивающая в периоды его максимального водопользования, обеспечить регулярную самоочистку русла реки в паводок, без дополнительных затрат воды [2]. В связи с высокой стоимостью руслоразряжения с применением землеустроительных методов гидравлические работы промывки русла осуществляются основанным на расчетах, определенных в соответствии с нормами, включёнными в настоящий проект.

Очистка русла рек от загрязненных донных отложений должна входить в систему мероприятий по охране водных источников и она должна быть увязана с на местных перспективах, и на этапах рассмотрения, и на этапах производства работ с санитарными требованиями.

Необходимость очистки русла определяется технико-экономическим расчетом с оценкой альтернативными вариантами уменьшения объемов сбросных вод и повышением степени очистки.

Плановое очищение речных руслов при его очистке и выравнивании должны обеспечить возобновление застойных, теневых и водоразделных зон, возникающих на крупных ветвях русел, в местах его резкого расширения, а также раздели различных препятствий и сооружений водосливных в руселе.

Размер поперечного сечения русла при его очистке следует назначать таким, чтобы слой загрязненных донных отложений h_0,накапливавшийся за период между очистками водными, размывался за время паводка T_0.

Расчет размыва может производиться с использованием формулы [3]

\[h_0 = I_0 T_0 \left(\frac{V_p}{V_p} \right)^{1/2} \left(\frac{V_p}{V_p} - 1 \right) \]

где I_0 - интенсивность размыва при V=U_0; I_0 = 1 см/сут; V_p - критическая скорость для загрязненных донных отложений.

Ширина русла B после реконструкции и реконструкции рек не должна превышать расчетной ширины B_p, определяемой из выражения

\[B < B_p = 1,5Q \sqrt{V} \]

где, Q - расчетный расход; V* = \sqrt{ghJ}, динамическая скорость.

При очистке и реконструкции разветвленного участка речного русла для повышения размывающей и транспортной способности речного потока следует предусматривать отсечение второстепенных несущих проток и рукавов от основного русла и учитывать возможные экологические последствия этого мероприятия.

Одним из перспективных способов повышения эффективности промывки загрязненных донных
ОГРАНИЧЕНИЯ НА ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ПРИ МОДЕЛИРОВАНИИ РАСПРОСТРАНЕНИЯ ЗАГРЯЗЯЮЩИХ ВЕЩЕСТВ СТОКОВЫМИ ТЕЧЕНИЯМИ

А.Н. Крутов, д.т.н.

Региональная миссия Всемирного банка реконструкции и развития
в Республике Узбекистан

(Республика Узбекистан)

Описанные в [1] математические модели позволяют давать прогноз концентраций различных загрязняющих водосём веществ с разной степенью точности и детализации. При этом, чем выше точность и детализация, тем сложнее алгоритмы, что приводит к составлению прогнозов к большим затратам труда и машинного времени. При этом все модели построены по принципу мерности в пространстве, начиная с трехмерных, дающих наилучшую детализацию (распределение концентрации и по глубине и по площади водосёма) и конча нуллерными, позволяющими определять лишь среднюю по объему всего водосёма конценрацию. В этом смысле можно говорить о неравенстве математических моделей.

Сначала рассмотрим область применимости двумерных и одномерных уравнений Сен-Венана. Затем снимем ограничения, характеризующие специфику вывода этих уравнений из трехмерных и, тем самым, получим области применимости трехмерных уравнений.

Основные допущения при выводе двумерных уравнений Сен-Венана следующие:

1. Предположение о гидростатичности давления.
2. Возможность пренебрежения отличием распределения плановых составляющих скорости от равномерного.
3. Гипотеза о связи t с U:

 \[t = \lambda U/|U|/2 \]

где 1 - скалярный коэффициент гидравлического трения, который вычисляется по формуле Манинга:

 \[\lambda = \frac{2g}{C} = \frac{2g n^2}{H^{1/3}} \]

где C - коэффициент Шези, n - коэффициент шероховатости.