Mars might have salty liquid water

Researchers have long known that there was water in the form of ice on Mars. Now, new research from NASA’s Mars rover Curiosity shows that it is possible that there is liquid water close to the surface of Mars. The explanation is that the substance perchlorate has been found in the soil, which lowers the freezing point so the water does not freeze into ice, but is liquid and present in very salty salt water — a brine. The results are published in the scientific journal Nature.

001

The researchers believe that Gale Crater was a large lake between 3.5 and 2.7 billion years ago. Mount Sharp, which is now an approximately five kilometer tall mountain in the middle of the crater, was probably formed by deposits from the crater and the surrounding area.

“We have discovered the substance calcium perchlorate in the soil and, under the right conditions, it absorbs water vapour from the atmosphere. Our measurements from the Curiosity rover’s weather monitoring station show that these conditions exist at night and just after sunrise in the winter. Based on measurements of humidity and the temperature at a height of 1.6 meters and at the surface of the planet, we can estimate the amount of water that is absorbed. Read more

Water splitter runs on an ordinary AAA battery

Hongjie Dai and colleagues have developed a cheap, emissions-free device that uses a 1.5-volt battery to split water into hydrogen and oxygen. The hydrogen gas could be used to power fuel cells in zero-emissions vehicles.

Water-AAA-battery

Stanford scientists have developed a low-cost device that uses an ordinary AAA battery to split water into oxygen and hydrogen gas. Gas bubbles are produced from electrodes made of inexpensive nickel and iron.

Stanford University Professor Hongjie Dai has developed an emissions-free electrolytic device that splits water into hydrogen and oxygen at room temperature.

In 2015, American consumers will finally be able to purchase fuel cell cars from Toyota and other manufacturers. Although touted as zero-emissions vehicles, most of the cars will run on hydrogen made from natural gas, a fossil fuel that contributes to global warming. Read more

Water, water, everywhere: Controlling the properties of nanomaterials

Scientists at the US Department of Energy’s Oak Ridge National Laboratory are learning how the properties of water molecules on the surface of metal oxides can be used to better control these minerals and use them to make products such as more efficient semiconductors for organic light emitting diodes and solar cells, safer vehicle glass in fog and frost, and more environmentally friendly chemical sensors for industrial applications.

Water-nanomaterials

Pictured at the NOMAD instrument at Oak Ridge National Laboratory’s Spallation Neutron Source are David Wesolowski of the Chemical Sciences Division, Thomas Proffen of SNS, Hsiu-Wen Wang of JINS, and NOMAD instrument scientist Mikhail Feygenson. Wang and Feygenson are holding the NOMAD sample-mounting wand.

The behavior of water at the surface of a mineral is determined largely by the ordered array of atoms in that area, called the interfacial region. However, when the particles of the mineral or of any crystalline solid are nanometer-sized, interfacial water can alter the crystalline structure of the particles, control interactions between particles that cause them to aggregate, or strongly encapsulate the particles, which allows them to persist for long periods in the environment. As water is an abundant component of our atmosphere, it is usually present on nanoparticle surfaces exposed to air. Read more

Water in moon rocks provides clues and questions about lunar history

A recent review of hundreds of chemical analyses of Moon rocks indicates that the amount of water in the Moon’s interior varies regionally — revealing clues about how water originated and was redistributed in the Moon. These discoveries provide a new tool to unravel the processes involved in the formation of the Moon, how the lunar crust cooled, and its impact history.

Water-in-moon

This shows secondary electron image of pits left by ion microprobe analyses of a heterogeneous apatite grain in Apollo sample 14321, 1047. Water has now been detected in apatite in many different lunar rock types.

This is not liquid water, but water trapped in volcanic glasses or chemically bound in mineral grains inside lunar rocks. Rocks originating from some areas in the lunar interior contain much more water than rocks from other places. The hydrogen isotopic composition of lunar water also varies from region to region, much more dramatically than in Earth. Read more

Renewable energy from evaporating water, left-handed kangaroos and a fasting diet that slows aging

It was a good week for new technology as a team of researchers at Columbia University announced a way to get renewable energy from evaporating water—they have come up with two devices, one a piston-based engine that generates electricity while floating, and the other, a rotary engine that powers a tiny car.

worldsthinne

Schematic illustration of electrically biased suspended graphene and light emission from the center of the suspended graphene.

Also, another team with members from the U.S. and Korea demonstrated for the first time an on-chip visible light source using graphene—the world’s thinnest light bulb. And a team of chemists at UCLA announced that they had devised technology that could transform solar energy storage—it is a way to extend energy storage in solar cells from microseconds to weeks. Read more