министерство энергетики и электрификации соср главниипроект ВСЕСОЮЗНЫЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИДРОТЕХНИКИ ямеви Б. Е. ВЕДЕНЕЕВА

министерство энергетики и электрификации СССР главниипроект ВСЕСОЮЗНЫЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИДРОТЕХНИКИ имени Б. Е. ВЕДЕНЕЕВА

РУКОВОДСТВО ПО ОПРЕДЕЛЕНИЮ НАГРУЗОК И ВОЗДЕЙСТВИЙ НА ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ

(волновых, ледовых и от судов)

П 58-76 ВНИИГ

ЛЕНИНГРАД 1977 Руководство составлено в развитие главы СНиП II-57-75 «Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)». В Руководстве воспроизведен текст указанной главы СНиП, даны пояснения к нему и приведены примеры расчета.

В разделе, названном «Дополнения», представлены решения ряда дополнительных и вспомогательных задач, а также — вспомогательные материалы. Рекомендации, изложенные в этом разделе, должны рассматриваться не как обязательные, хотя они и не противоречат СНиП. Руководство предназначено для инженерно-технических работников

Руководство предназначено для инженерно-технических работников проектных и проектно-изыскательских институтов и строительных организаций, занимающихся проектированием и строительством речных и морских гидротехнических сооружений.

предисловие

Руководство составлено в развитие главы СНиП II-57-75 «Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)».

Приведенный в Руководстве текст главы СНиП II-57-75 отмечен на полях сбоку вертикальной чертой. К каждому или нескольким пунктам главы СНиП даны соответствующие пояснения по их применению, а также примеры расчета, охватывающие наиболее типичные случаи в практике проектирования и иллюстрирующие порядок применения указаний, приведенных в СНиПе. Нумерация формул, таблиц и рисунков двойная: первый номер — порядковый, второй — в скобках — соответствует номеру, данному в главе СНиП.

Руководство разработано ВНИИГом имени Б. Е. Веденеева с участием: Союзморниипроекта и Черноморниипроекта Минморфлота, Института водных проблем АН СССР, Государственного океанографического института и Государственного гидрологического института Главгидрометсолужбы, МИСИ имени В. В. Куйбышева и Ленинпрадского гидрометеорологического института Минвуза СССР, Ленинпрадского института водного транспорта, Гипроречтранса и Лениппроречтранса Минречфлота РСФСР, института Гидропроект имени С. Я. Жука Минэнерго СССР, Гипроморнефти Миннефтепрома СССР, ЦНИИСа, Черноморского отделения ЦНИИСа и СибЦНИИСа Минтрансстроя, ВНИИ ВОДГЕО Госстроя СССР и НИИЖТа МПС СССР.

Научные редакторы: Заслуженный деятель науки и техники РСФСР, профессор, доктор технических наук Д. Д. Лаппо и профессор Б. А. Урецкий.

Отзывы и замечания просьба направлять по адресу: 195220, Ленинград, Гжатская, 21, ВНИИГ им. Б. Е. Веденеева.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие нормы должны соблюдаться при определении нагрузок и воздействий волновых, ледовых и от судов для проектирования вновь строящихся и реконструируемых речных и морских гидротехнических сооружений.

1.2. В настоящей главе СНиП устанавливаются нормативные значения нагрузок и воздействий от волй, льда и судов на гидротехнические сооружения. Расчетная нагрузка должна определяться как произведение нормативной нагрузки на коэффициент перегрузки *n*, учитывающий возможное отклонение нагрузки в неблагоприятную сторону от ее нормативного значения; *n* должен приниматься согласно требованиям, приведенным в главе СНиП по основным положениям проектирования речных гидротехнических сооружений.

Соответственно требованиям, приведенным в указанной главе СНиП, значения коэффициентов перегрузки *n* надлежит принимать по табл. 1.

Таблица 1

Наименование нагрузок и воздействий	Коэффициент перегрузки п			
Гидростатическое и волновое давление, а также дав-	1			
ление фильтрационных вод по подземному контуру	1,1			
сооружения, в швах и расчетных сечениях бетонных	1,2			
и железобетонных конструкций (противолавление)	По главе СНиП на на-			
ледовые нагрузки	грузки и воздействия			

В том же источнике приводится формула, которой надлежит пользоваться при оценке наступления предельных состояний первой группы (устойчивости и прочности) гидротехнических сооружений, их конструкций и оснований. В состав этой формулы входит коэффициент сочетания нагрузок *n*_c, который вводится в виде множителя к нагрузкам (кроме коэффициента перегрузки) и учитывает вероятность неблагоприятных сочетаний нагрузок и воздействий, принимаемых в соответствующих расчетах.

Значения этих коэффициентов надлежит принимать по табл. 2.

Внесено Всесоюзным ордена Трудового Красного Знамени научно-исследовательским институтом гидротехники им. Б. Е. Веденеева	Утверждено ВНИИГом им. Б. Е. Веденеева решением № 56 от 6 декабря 1976 г. по согласованию с Главниипроектом Минэнерго СССР	Срок введения II квартал 1977 г.
--	--	---

Рис. 1(1). Эпюры давления стоячих волн на вертикальную стенку со стороны открытой акватории: а-при гребне волны; б-при ложбине волны (с эпюрами взвешивающего волнового давления на берменные массивы).

Таблица 2

Сочетания нагрузок	Коэффициент сочета- ния нагрузок <i>п</i> с
Основное	1 0,9 0,95

1.3. Нагрузки от волн и льда на гидротехнические сооружения I класса и при надлежащем обосновании также II класса, а также расчетные элементы волн на открытых и огражденных акваториях необходимо уточнять на основе данных натурных наблюдений и лабораторных исследований.

Примечание. Указания по определению элементов волн на открытых и огражденных акваториях, терминология и основные буквенные обозначения приведены в приложениях 1 и 2 к настоящей главе.

Изложенные в п. 1.3 требования об определении элементов волн относятся к объектам I класса и — при надлежащем обосновании — также II класса.

2. НАГРУЗКИ И ВОЗДЕЙСТВИЯ ВОЛН НА ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ ВЕРТИКАЛЬНОГО И ОТКОСНОГО ПРОФИЛЕЙ

Нагрузки от стоячих волн на сооружения вертикального профиля

2.1. Расчет сооружений на давление стоячих волн со стороны открытой акватории (рис. 1) должен производиться при глубине до дна $H_{\pi} > 1,5h$ и глубине над бермой $H_{E} \ge 1,25h$; при этом в формулах для свободной волновой поверхности и волнового давления вместо глубины до

Рис. 2(2). Графики значений коэффициента k'_Б.

дна $H_{\rm g}$, м, необходимо вводить условную расчетную глубину H, м, определяемую по формуле

$$H = H_{c} + k'_{b} (H_{a} - H_{c}),$$
 1(1)

где H_c — глубина над подошвой сооружения, м; $K^{\text{Б}}$ — коэффициент, принимаемый по графикам рис. 2(2); h — высота бегущей волны, м.

Обычно бермой считают поверхность части постели, которая располагается впереди сооружения, в основном, для предотвращения выпирания основания, в том числе и постели, причем ширина бермы В_Б отсчитывается, как показано на рис. 1 (1), от сооружения до верхней бровки откоса.

Поскольку же формула 1(1) обусловливается характером взаимодействия сооружения с набегающей на него волной, следует при использовании прафика, приведенного на рис. 2(2), учитывать полную ширину (поверху) отсыпаемой впереди сооружения каменной призмы независимо от назначения ее составных частей.

Однажо, при ширине этой призмы, большей $0,3\lambda$, например, в случае, обуславливаемом требованием, приведенным далее в п. 2.9, можно полагать, что характер волнения у грани сооружения будет, практически, аналогичен наблюдаемому при подобном очертании естественного дна. В этом случае, следовательно, надлежит при использовании формулы 1(1) и графика 2(2) вводить в расчет для горизонтальной поверхности призмы $H_{\rm q}$ = $H_{\rm c}$, соответственно чему H= $H_{\rm c}$.

При ступенчатом очертании поверхности призмы значение H_{π} отсчитывается над наиболее заглубленным ее участком, а величина $B_{\rm B}$ принимается равной ширине поверху прилегающего к сооружению участка призмы.

2.2. Возвышение или понижение свободной волновой поверхности η, м, у вертикальной стены, отсчитываемое от расчетного уровня воды, должно определяться по формуле

$$\eta = -h\cos\sigma t - \frac{kh^2}{2} \operatorname{cth} kH\cos^2\sigma t, \qquad 2(2)$$

где $\sigma = \frac{2\pi}{\tau}$ — частота волны; $\overline{\tau}$ — средний период волны, с; t — время, с; $k = \frac{2\pi}{\overline{\lambda}}$ — волновое число; $\overline{\lambda}$ — средняя длина волны, м.

При действии стоячей волны на вертикальную стену необходимо предусматривать три случая определения η по формуле 2(2) для следующих величин соѕ о*t*:

а) соs $\sigma t = 1$ — при подходе к стене вершины волны, возвышающейся над расчетным уровнем на η_{B} , м;

б) $1 > \cos \sigma t > 0$ — при максимальном значении горизонтальной волновой нагрузки P_{xr} для гребня волны, возвышающегося над расчетным уровнем на η_r , в этом случае значение соз σt должно определяться по формуле

$$\cos \sigma t = \frac{\overline{\lambda}}{\pi h \left(8\pi \frac{H}{\overline{\lambda}} - 3 \right)}; \qquad 3(3)$$

в) соз $\sigma t = -1$ — при максимальном значении горизонтальной волновой нагрузки $P_{x\pi}$ для подошвы волны, расположенной ниже расчетного уровня на η_{π} .

Примечание. При $H/\bar{\lambda} \leqslant 0,2$ и во всех других случаях, когда по формуле 3(3) величины соз $\sigma t > 1$, необходимо в дальнейших расчетах принимать значение соз $\sigma t = 1$.

Для глубоководной зоны, то есть при $H > 0,5\overline{\lambda}$, cth $kH \rightarrow 1$, соответственно чему формула 2(2) принимает вид:

$$\eta = -h\cos \sigma t - \frac{kh^2}{2}\cos^2 \sigma t.$$

2.3. В глубоководной зоне горизонтальную нагрузку на единицу длины вертикальной стены P_x , тс/м, при гребне или ложбине стоячей волны

4

(рис. 1(1)) необходимо принимать по эпюре волнового давления, при этом величина p, тс/м², на глубине z, м, должна определяться по формуле

$$p = \gamma h e^{-kz} \cos \sigma t - \gamma \frac{kh^2}{2} e^{-2kz} \cos^2 \sigma t - \gamma \frac{kh^2}{2} (1 - e^{-2kz}) \cos 2\sigma t - \gamma \frac{k^2h^3}{2} e^{-3kz} \cos 2\sigma t \cos \sigma t, \qquad 5(4)$$

где γ — объемный вес воды, тс/м³; z — ординаты точек ($z_1 = -\eta_r$; $z_2 = 0$; ... $z_n = H$), м, отсчитываемые от расчетного уровня. Для гребня при $z_1 = -\eta_r$, а для ложбины при $z_2 = 0$ следует принимать p = 0.

Формула 5(4) получена из общей формулы для давления при глубинах, больших критической (H>1,5h), представленной в переменных Эйлера в виде:

$$\nu = \gamma h \frac{\operatorname{ch} k (H-z)}{\operatorname{ch} k H} \cos \sigma t + \gamma k h^2 \frac{1-\operatorname{sh}^2 k (H-z)}{\operatorname{sh} 2k H} \cos^2 \sigma t -$$

 $-\gamma \frac{kh^2}{2} \frac{\operatorname{ch} 2kH - \operatorname{ch} 2k(H-z)}{\operatorname{sh} 2kH} \cos 2\mathfrak{a}t - \gamma \frac{k^2h^3}{2} \frac{\operatorname{sh} 2k(H-z)\operatorname{sh} k(H-z)}{\operatorname{sh} 2kH\operatorname{sh} kH} \cos 2\mathfrak{a}t \cos \mathfrak{a}t. \quad 6$

		Таблица З(
,№ т о чек	Заглубление точек <i>г</i> , м	Значение волнового давления <i>р</i> , тс/м ²				
	при гр	ребне				
1	- η _г	$p_1 = 0$				
2	0	$p_2 = k_2 \gamma h$				
3	0,25 <i>H</i>	$p_3 = k_3 \gamma h$				
4	0,5 <i>H</i>	$p_4 = k_4 \gamma h$				
5	H	$p_5 = k_5 \gamma h$				
	при ло	жбине				
6	0	$p_6 = 0$				
7	η_{Π}	$p_7 = -\gamma \eta_{\Pi}$				
8	0,5 <i>H</i>	$p_8 = -k_8 \gamma h$				
9	H	$p_9 = -k_9 \gamma h$				
П фицие (уетп 1(4)и	римечани нтов k_2, k_3, k ринимать пог 5(5).	е. Значения коэф 4, k ₅ , k ₈ и k ₉ сле рафикам рис. З(З)				

Для глубоководной зоны $(H > >0,5\lambda_{\rm гл})$, где практически допустимо считать, что дно не влияет на основные характеристики волн, подстановка в формулу 6 значения $H = = \infty$ приводит к расчетной формуле 5(4).

Для построения эпюр давления достаточно определить по формуле 5(4) величины *р* в 6—7 точках, расположенных на уровнях (рис. 1(1)): а) при гребне волны:

 $z_1 = -\eta_r$ (здесь p=0), $z_2=0$, $z_3=h$, $z_4=2h$, $z_i=H$ (дно) и еще на одномдвух уровнях между z_4 и дном;

б) при ложбине волны:

 $z_1=0$ (здесь p=0), $z_2=\eta_{II}$ (здесь $p=p_{Makc}$), $z_3=2h$, $z_4=3h$, $z_i=H$ (дно) и еще на одном-двух уровнях между z_4 и дном.

2.4. В мелководной зоне горизонтальную нагрузку на единицу длины вертикальной стены P_x , тс/м, при гребне и ложбине стоячей волны

(рис. 1(1)) необходимо принимать по эпюре волнового давления; при этом величина p, тс/м², на глубине z, м, должна определяться по табл. 3(1).

Расчетные графики коэффициентов, приведенные на рис. 3(3) — 5(5), построены на основании теории стоячих волн в третьем приближении. Для определения давления в точках ниже спокойного уровня использована формула:

$$p = \frac{\gamma A_0}{\operatorname{ch} kH} \operatorname{ch} k \left(H - z\right) \operatorname{sin} \operatorname{ot} -$$

 $-\frac{\gamma A_0^{2\sigma^2}}{8 \operatorname{sh}^2 kH} \left\{ \cos 2\sigma t \left[3 \operatorname{ch} 2k \left(H - z \right) \operatorname{cth}^2 kH - 4 \operatorname{ch}^2 kH \right] - \operatorname{ch} 2k \left(H - z \right) \right\} -$

$$-\frac{\gamma A_0^{3\sigma^4} \operatorname{cth} kH}{16g^2 \operatorname{sh}^3 kH} \bigg\{ \operatorname{ch} k (H-z) \bigg(2 - \frac{11 \operatorname{ch}^2 kH + 1}{\operatorname{sh}^2 2kH} \bigg) + \bigg\}$$

Рис. 3(3). Графики значений коэффициентов k₂ и k₃.

Рис. 4(4). Графики значений коэффициентов k₄ и k₅.

Рис. 5(5). Графики значений коэффициентов k₈ и k₉.

$$+ \operatorname{ch} 3k (H-z) \left(2 + \frac{11 \operatorname{ch}^{2} kH + 1}{\operatorname{sh}^{2} 2kH} + D_{12} \right) \right\} \operatorname{sin} \sigma t + \\ + \frac{\gamma A_{0}^{3} \sigma^{4} \operatorname{cth} kH}{16 g^{2} \operatorname{sh}^{2} kH} \left\{ \operatorname{ch} k (H-z) \left(2 - \frac{21}{4 \operatorname{sh}^{2} kH} + D_{22} \right) + \\ + \operatorname{ch}^{3} k (H-z) \left(2 + \frac{21}{4 \operatorname{sh}^{2} kH} - D_{32} \right) \right\} \operatorname{sin} 3\sigma t,$$

7

8

где

$$D_{12} = -\frac{1}{4 \operatorname{ch}_2 kH} \left(\frac{7 \operatorname{ch}^2 kH + 2}{\operatorname{sh}^2 2kH} + 3 \right);$$

$$D_{22} = \frac{1}{8} \left(97 - 60 \operatorname{ch}^2 kH + 27 \frac{13 - 14 \operatorname{ch}^2 kH}{2 \operatorname{sh}^2 kH} \right);$$

$$D_{32} = \frac{3}{8 \operatorname{sh}^2 kH} \left(2 - \frac{9}{2 \operatorname{sh}^2 kH} \right).$$

При этом, волновое давление *p*, рассчитанное по формуле 7 для точки с ординатой в состоянии покоя *z*, при построении эпюры следует откладывать в точке с текущей ординатой *z*_i:

$$\begin{aligned} z_t &= -z - \frac{A_0}{\operatorname{sh} kH} \operatorname{sh} k \left(H - z \right) \operatorname{sin} \sigma t - \\ &- \frac{A_0 \sigma^2 \operatorname{cth} kH}{8g \operatorname{sh}^2 kH} \operatorname{sh} 2k \left(H - z \right) \left[\left(1 + \frac{3}{2 \operatorname{sh}^2 kH} \right) (1 - \cos 2\sigma t) - \frac{8 \operatorname{ch} kH - 2}{\operatorname{sh}^2 2kH} \right] - \\ &- \frac{A_0 \sigma^2 \operatorname{ch}^2 kH}{8g^2 \operatorname{sh}^5 kH} \left(2 \operatorname{ch}^2 kH - 4 - \frac{7 \operatorname{ch}^2 kH + 2}{\operatorname{sh}^2 kH} \right) \operatorname{sh} k \left(H - z \right) \operatorname{sin} \sigma t - \\ &- \frac{A_0 \sigma^2 \operatorname{ch}^2 \operatorname{ch}^2 kH}{16g^2 \operatorname{sh}^3 kH} \left\{ \operatorname{sh} k \left(H - z \right) \left(3 - \frac{21 \operatorname{ch}^2 kH - 3}{\operatorname{sh}^2 2kH} \right) + \\ &+ \operatorname{sh} 3k \left(H - z \right) \left(1 + \frac{19 \operatorname{ch}^2 kH - 1}{\operatorname{sh}^2 2kH} + 3D_{12} \right) \right\} \operatorname{sin} \sigma t + \\ &+ \frac{A_0 \sigma^4 \operatorname{cth}^2 kH}{144g^2 \operatorname{sh} kH} \left\{ \operatorname{sh} k \left(H - z \right) \left(1 + D_{22} - \frac{27}{4 \operatorname{sh}^2 kH} \right) + \\ &+ \operatorname{sh} 3k \left(H - z \right) \left(3 + \frac{45}{4 \operatorname{sh}^4 kH} - 3D_{32} \right) \right\} \operatorname{sin} 3\sigma t. \end{aligned}$$

Рис. 6. График значений $A_0 = f(h, \overline{\lambda}, H).$

В формулах 7 и 8 величина A_0 определяется в зависимости от элементов волны в створе расчетного сечения $h, \overline{\lambda}$ и H по рис. 6. Если точка с координатами $\frac{h}{\overline{\lambda}}$ и $\frac{\overline{\lambda}}{H}$ лежит на графиках, приведенных на рис. 3(3)— 5(5), правее границы разрушения стоячих волн или $\frac{\overline{\lambda}}{H} > 12$, то это означает, что в створе расчетного сечения не наблюдается режим стоячих волн.

При значениях $\frac{h}{\bar{\lambda}}$ и $\frac{\bar{\lambda}}{H}$, отличных от указанных на рис. 3(3)—5(5), соответствующие коэффициенты k_i определяются по интерполяции.

Следует иметь в виду, что для случая подхода гребня волны эпюры давления, построенные по ординатам, вычисленным по формуле 5(4) для глубоководной зоны или по табл. 3(1) для мелководной зоны, соответст-

вуют моменту *t*, когда наступает максимум горизонтальной силы *P*_{xr}, воспринимаемой вертикальной стеной на всей ее высоте.

Это, однако, не означает, что максимальная горизонтальная нагрузка P'_{xr} на единицу длины любого участка стены, ограниченного какими-либо горизонтальными сечениями (например (рис. 1(1)), между точками 3 и 4), равна площади соответствующей части эпюры волнового давления, построенной указанным образом. Это справедливо лишь в частном случае, когда значение соs σt , вычисляемое по формуле 3(3), равно или принимается равным (см. примечание к п. 2.2) единице. Если же соs $\sigma t < 1$, то наступление максимальных значений P_{xr} и P'_{xr} не совпадает во времени.

Поэтому при необходимости расчета устойчивости и прочности участка стены, верх и низ которого ограничены заданными глубинами, например, затвора плотины, — целесообразно рассчитать (лучше на ЭВМ) хронограммы волнового давления p=f(t) за период волны по формулам 5(4) для глубоководной зоны или 7 и 8 — для мелководной зоны — и выбрать из результатов этого расчета значения волновых давлений, соответствующие моменту наступления максимума силы волнового давления P'_{xr} на рассматриваемый участок.

Для приближенных расчетов можно ограничиться определением значения P'_{xr} как площади части эпюры волнового давления, заключенной между отметками верха и низа рассматриваемого участка сооружения. Однако эпюру давления следует при этом строить для глубоководной зоны по ординатам, вычисляемым по формуле 5(4), а для мелководной зоны — по формуле 6, принимая в обоих случаях соs $\sigma t = 1$.

Нагрузки и воздействия волн на сооружения вертикального профиля и их элементы (особые случаи)

2.5. Волновое давление p, тс/м², на вертикальную стену с возвышением над расчетным уровнем верха сооружения $z_{\rm BC}$, м, на величину менее $\eta_{\rm B}$, м, или с заглублением — до 0,5h, м, следует определять согласно требованиям пп. 2.3 и 2.4 настоящей главы с последующим умножением полученных значений давления на коэффициент $k_{\rm CH}$, определяемый по формуле

$$k_{\rm CH} = 0.76 \pm 0.19 \frac{z_{\rm BC}}{h},$$
 9(5)

где знаки «плюс» и «минус» соответствуют положению верха сооружения выше или ниже расчетного уровня воды.

Горизонтальная волновая нагрузка P_{xr} в рассматриваемом случае должна определяться по площади эпюры волнового давления в пределах высоты вертикальной стены.

В формуле 9(5) $z_{\rm BC}$ — абсолютное значение возвышения или заглубления верха сооружения относительно расчетного уровня.

2.6. При подходе фронта волны к сооружению под углом α , град, со стороны открытой акватории (в расчетах устойчивости и прочности грунтов основания) волновую нагрузку на вертикальную стену, определенную согласно требованиям пп. 2.3 и 2.4 настоящей главы, необходимо уменьшать путем умножения ее на коэффициент $k'_{\rm CH}$, принимаемый равным

а, град	k' _{CH}
45	1
60	0,9
75	0,7

Примечание. При перемещении волн вдоль стены, т. е. для α, близких или равных 90, град, волновую нагрузку на секцию сооружения следует определять согласно требованиям п. 2.7 настоящей главы.

2.7. Горизонтальную нагрузку от дифрагированных волн со стороны огражденной акватории следует определять при относительной длине секции сооружения $\frac{l_c}{\overline{\lambda}} \leq 0.8$; при этом расчетную эпюру волнового давления со значениями *р*, тс/м², допускается выполнять по трем точкам для следующих случаев:

а) вершина волны совмещена с серединой секции сооружения (рис. 7 (6), *a*), если *z*, м, имеет значения:

$$z_1 = \eta_B = -\frac{h_{\rm A}}{2} - \frac{kh_{\rm A}^2}{8} \, {\rm cth} \, kH,$$
 to $p_1 = 0;$ 10(6)

$$z_2 = 0$$
, to $v_2 = k_{cH}'' \left(\frac{h_{\pi}}{2} - \frac{kh_{\pi}^2}{8} \operatorname{cth} kH \right);$ 11(7)

$$z_3 = II_c$$
, to $p_3 = k_{cH}^* \left(\frac{h_A}{2 \operatorname{ch} kH} - \frac{kh_A^2}{4 \operatorname{sh} 2kH} \right);$ 12(8)

б) подошва волны совмещена с серединой секции сооружения (рис. 7(6)б), если z, м, имеет значения:

$$z_1 = 0, \quad \text{to} \quad p_1 = 0;$$
 13(9)

$$z_2 = \eta_{\rm fr} = \frac{h_{\rm fl}}{2} - \frac{kh_{\rm fl}^2}{8} \operatorname{cth} kH$$
, to $p_2 = -k_{\rm cH}^{\prime} \gamma \eta_{\rm fl};$ 14(10)

$$p_3 = H_c$$
, to $p_3 = -k_{cH}^{'} \gamma \left(\frac{h_{\pi}}{2 \operatorname{ch} kH} + \frac{k h_{\pi}^2}{4 \operatorname{sh} 2kH} \right)$, 15(11)

где h_{π} — высота дифрагированной волны, м, определяемая согласно требованиям приложения 1 к настоящей главе; $k_{ch}^{"}$ — коэффициент, принимаемый по табл. 4(2).

Таблица 4(2)

Относительная длина секции <u>l_c</u>	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,83			
Коэффициент $k_{ m cu}^{''}$	0,98	0 ,92	0,85	0,76	0,64	0,51	0,38	0,23			
Примечание. При глубине со стороны огражденной акватории $H \ge 0,3\overline{\lambda}$ следует строить треугольную энюру воднового давления поннимая на глубине											

 $z_3 = 0,3\overline{\lambda}$ волновое давление равным нулю (рис. 7(6)).

ź

2.8. Взвешивающее волновое давление в горизонтальных швах массивовой кладки и по подошве сооружения следует принимать равным соответствующим величинам горизонтального волнового давления в край-

Рис. 8 (7). График допускаемых значений донных скоростей.

них точках (рис. 1(1) и 7(6)) при линейном изменении его в пределах ширины сооружения.

2.9. Максимальную донную скорость v_{MR} , м/с, перед вертикальной стеной (от действия стоячих волн) на расстоянии 0,25 $\overline{\lambda}$ от передней грани стены необходимо определять по формуле

$$v_{\rm MR} = \frac{2n_{\rm c}\pi\hbar}{\sqrt{\frac{\pi}{g}\bar{\lambda}\sin\frac{4\pi}{\bar{\lambda}}H}},$$
 16(12)

где nc — коэффициент, принимаемый по табл. 5(3).

Таблица 5(3)

Пологость волны 🚠	8	10	15	20	30
Коэффициент n _c	0,6	0,7	0,75	0,8	1

Допускаемые значения неразмывающих донных скоростей $v_{\text{доп.}}$ м/с, для грунта крупностью фракций d_{10} , мм, следует принимать по рис. 8(7); при $v_{\text{мд}} > v_{\text{доп}}$ необходимо предусматривать защиту от размыва основания на полосе вдоль сооружения шириной $0, 4\overline{\lambda}$.

В формуле 16(12) *Н* — действительная глубина у сооружения, а не условная расчетная глубина, принимаемая при определении волнового давления (п. 2.1).

На рис. 8(7) изображена кривая скоростей, соответствующих началу перемещения грунта;

*d*₁₀ — указанная на графике на оси абсцисс крупность фракций грунта, включающих до 10% (по весу) более мелких частиц.

Неразмывающие скорости для грунтов с крупностью фракций d> >100 мм следует определять по приводимой ниже формуле 32.

2.10. Эпюра взвешивающего волнового давления на берменные массива должна приниматься трапецеидальной согласно рис. 1(1), δ с ординатами $p_{\text{Б}i}$, тс/м², определяемыми по формуле

$$p_{\mathrm{E}l} = \alpha_{\mathrm{E}} \gamma h \, \frac{\mathrm{ch} \, k \, (H - H_{\mathrm{c}})}{\mathrm{ch} \, k H} \cos k x_{l} < p_{\mathrm{nc}}, \qquad 17(13)$$

где x_1 — расстояние от стены до соответствующей грани массива, м; $p_{\rm nc}$ — волновое давление на уровне подошвы стенки. $\alpha_{\rm b}$ — коэффициент, принимаемый по табл. 6(4).

Относительная	Коэффициент $\alpha_{\overline{b}}$ при поло-						
глубина <u>Н</u>	гостях волн $\frac{\overline{\lambda}}{\hbar}$						
	15 и менее	20 и более					
Менее 0,27	0,86	0,64					
0,27—0,32	0,60	0,44					
Более 0,32	0,30	0,30					

Таблица 6(4)

Если по расчету неравенство 17(13) не выполняется, взвешивающее давление у ребра стенки принимается равным боковому, а характер изменения взвешивающего давления под берменными массивами сохраняется; следовательно, в этом случае

 $p_{\mathrm{E}i} = p_{\mathrm{ff}} \cos k x_i$.

Пример 1. Определить волновые воздействия на оградительное сооружение вертикальной формы из массивовой кладки, расположенное в мелководной зоне:

 а) боковое давление со стороны открытой воды и защищенной акватории и опрокидывающие моменты относительно внутреннего и внешнего ребер сооружения;

б) взвешивающее давление по основанию и по отдельным швам;

в) донные скорости с оценкой гранулометрического состава грунта дна и взвешивающее давление на берменные массивы.

Исходные данные: высота волн h=6,0 м; средняя длина волн $\lambda = 100$ м; естественная глубина у сооружения $H_{\rm A}$ =15,0 м; глубина до верха каменной постели $H_{\rm c}$ =13,0 м; подводная часть сооружения состоит из 6 курсов массивов высотой 2,3 м; ширина сооружения по подошве a=12,0 м; ширина бермы $B_{\rm b}$ =6,0 м; длина секции $l_{\rm c}$ =20,0 м.

1. Определяем максимальную донную скорость v_{MR} перед вертикальной стеной при действии стоячих волн по формуле 16(12).

Значение коэффициента n_c определяем по табл. 5(3) при $\frac{\overline{\lambda}}{h} = \frac{100}{6} =$ = 16,7, чему соответствует $n_c = 0,76$. В данном случае H — естественная глубина в месте возведения сооружения. Тогда

$$v_{MR} = \frac{2 \cdot 0.76 \cdot 3.14 \cdot 6}{\sqrt{\frac{3.14}{9.81} \cdot 100 \text{ sh} \frac{4 \cdot 3.14 \cdot 15}{100}}} = 2.8 > 1.8 \text{ m/c}.$$

Соответственно пояснениям к п. 2.9 определим требуемый диаметр неразмываемых фракций по формуле 32, приведенной далее в настоящем Руководстве.

Рис. 9. Эпюры бокового и взвешивающих давлений стоячей волны со стороны открытой акватории при подходе гребня волны (размеры в м, ординаты эпюр в тс/м², силы давления в тс/м).

Решив предварительно уравнение 32 относительно d и принимая $v_{\text{доп}} = v_{\text{мд}} = 2,8$ м/с, $k_m = 1$ (по табл. 20), $\gamma_{\text{м}} = 2,6$ тс/м³ и $\gamma_{\text{B}} = 1,0$ тс/м³, получим:

$$d_{50} = \frac{2,8^2 \cdot 1,0}{1,55^2 \cdot 1,0^2 (2,6-1,0) \cdot 9,81} = 0,21 \text{ M},$$

где d₅₀ — крупность фракций, включающих до 50% (по весу) более мелких зерен.

В соответствии с п. 2.9 впереди сооружения на расстоянии $0,4\overline{\lambda} = 0,4 \cdot 100 = 40$ м необходимо крепить дно камнем крупностью $d_{50} \ge 0,21$ м. Толщину защитного покрова с учетом обратного фильтра принимаем равным 1,5 м.

Тогда — в соответствии с пояснениями к п. 2.1 — принимаем расчетное значение

$$H_{\mathtt{A}} = 15,0 - 1,5 = 13,5 \text{ M} > 1,5h = 1,5 \cdot 6 = 9,0 \text{ M}.$$

2. Над бермой, возвышающейся в нашем случае на 0,5 м над защитным покровом, предусмотрена укладка берменных массивов высотой

 $b = 0,25h = 0,25 \cdot 6,0 = 1,5$ соответственно чему $H_{\rm B} = 13,0-1,5=11,5$ м> >1,25 $h = 1,25 \cdot 6,0=7,5$ м.

При $\frac{B_{\rm b}}{\overline{\lambda}} = \frac{6.0}{100} = 0,06$, $\frac{H_{\rm c}}{H_{\rm a}} = \frac{13.0}{13.5} = 0,96$ находим по рис. 2(2) $k_{\rm b}' = 0,95$; тогда — по формуле 1(1) — расчетная глубина $H = 13.0 + 0.95 (13.5 - 13.0) = 13.48 \approx 13.5$ м. При этом $\frac{H}{\overline{\lambda}} = \frac{13.5}{100} = 0,135 < 0,5$.

На основании вычислений, приведенных в пп. 1 и 2 настоящего расчета, заключаем, что согласно п. 2.1 дальнейший расчет рассматриваемого сооружения следует производить на воздействие стоячих волн в мелководной зоне.

Рис. 10. Эпюры бокового и взвешивающих давлений стоячей волны со стороны открытой акватории при подходе ложбины волны (размеры м, ординаты эпюр в тс/м², силы давления в тс/м).

3. Определяем расчетные моменты времени, оцениваемые значениями соз от согласно п. 2.2.

Так как в нашем случае $\frac{H}{\bar{\lambda}}$ =0,135<0,2, то по примечанию к п. 2.2

значение соѕ σt , соответствующее наибольшему значению горизонтальной волновой нагрузки P_{xr} при гребне волны, равно единице. Следовательно, при определении волновых нагрузок на сооружение со стороны открытой воды достаточно рассмотреть два расчетных момента времени, соответствующих моментам подхода к стене:

вершины волны с возвышением $\eta_{\rm B}$ над расчетным уровнем и одновременным наступлением максимума горизонтальной силы волнового давления $P_{\rm xr}$ при значении соз $\sigma t = 1$;

подошвы волны с понижением η_n от расчетного уровня, при значении соs $\sigma t = -1$.

4. В соответствии с п. 2.2 и формулой 2(2) определяем расчетные возвышения и понижения волновой поверхности у стены при волновом числе $k = \frac{2\pi}{\overline{\lambda}} = \frac{6,28}{100} = 0,0628;$

$$\begin{split} \eta_{\rm B} &= -6.0\,(+1) - \frac{0.0628 \cdot 6.0^2}{2}\,{\rm cth}\,(0.0628 \cdot 13.5)(+1)^2 = -7.65\,\,{\rm m};\\ \eta_{\rm \Gamma} &= \eta_{\rm B} = -7.65\,\,{\rm m};\\ \eta_{\rm \Pi} &= -6.0\,(-1) - \frac{0.0628 \cdot 6.0^2}{2}\,{\rm cth}\,(0.0628 \cdot 13.5)(-1)^2 = 4.35\,\,{\rm m}. \end{split}$$

5. Ординаты эпюр волнового давления, необходимые для определения горизонтальной волновой нагрузки на единицу длины вертикальной стены (для гребня P_{xr} и для подошвы P_{xn}), вычисляем в соответствии с п. 2.4 и табл. 3(1).

Расчеты ведем в табличной форме. Значения коэффициентов $k_2 - k_5 k_8 - k_9$ определяем по графикам рис. 3(3), 4(4) и 5(5), предварительно вычислив крутизну $\frac{h}{\bar{\lambda}}$ и относительную длину волны $\frac{\bar{\lambda}}{H}$ по значениям элементов расчетной волны h и $\bar{\lambda}$ и глубине H

$$\frac{h}{\overline{\lambda}} = 6:100 = 0.06;$$
 $\frac{\overline{\lambda}}{H} = 100:13.5 = 7.4.$

Таблица 7

N	Заглублени	е точек г, м	Значения коз $k_1 - k_5;$	ффициентов	Значения волнового давления р,		
точек			для г	ребня	TC/M	2	
1	ηr	7,65		_	<i>p</i> ₁	0	
2	0	0	k2	0,84	$p_2 = k_2 \gamma h$	5,0	
3	0,25 <i>H</i>	3,38	k ₃	0,69	$p_3 = k_2 \gamma h$	4,15	
4	0,5 <i>H</i>	6,75	k,	0,59	$p_4 = k_2 \gamma h$	3,5	
5	<u> </u>	13,5	k.5	0,52	$p_5 = k_2 \gamma h$	3,1	
			для под	ошвы			
6	0	0	-		<i>P</i> ₆	0	
7	η_{Π}	4,35	-	—	$p_7 = -\eta_{\rm H}\gamma$	4,35	
8	0,5//	6,75	k ₈	0,58	$p_8 = -k_8 \gamma h$	3,5	
9	H	13,5	k_9	0,52	$p_9 = -k_9 \gamma h$	3,1	

6. По данным табл. 7 строим эпюры волнового давления при подходе со стороны открытой акватории к вертикальной стене гребня волны (рис. 9) и подошвы волны (рис. 10), соединяя расчетные точки прямыми линиями.

Суммируя площадь эпюры волнового давления выше уровня подошвы стены, находим значения сил волнового давления P_{xr} и P_{xn} . Величины волновых давлений на уровне подошвы p'_5 и p'_9 определяем соответственно по значениям p_4 , p_5 п p_8 , p_9 путем линейной интерполяции

$$P_{xr} = \frac{p_2(-\eta_r)}{2} + \frac{p_2 + p_3}{2} \frac{H_c}{4} + \frac{p_3 + p_4}{2} \frac{H}{4} + \frac{p_4 + p_5'}{2} \left(H_c - \frac{H}{2}\right),$$

$$P_{xr} = \frac{5,0\cdot7,65}{2} + \frac{5,0+4,15}{2}\cdot3,38 + \frac{4,15+3,5}{2}\cdot3,38 + \frac{3,5+3,1}{2} (13,0-6,75) = 68,1 \text{ rc/m};$$

$$P_{xn} = \frac{p_7\eta_n}{2} - \frac{p_7 + p_8}{2} \left(\frac{H}{2} - \eta_n\right) + \frac{p_8 + p_9'}{2} \left(H_c - \frac{H}{2}\right),$$

$$P_{xn} = \frac{-4,35\cdot4,35}{2} + \frac{-4,35-3,5}{2} \cdot (6,75-4,35) + \frac{-3,5-3,1}{2} \cdot (13,0-6,75) = = -48,9 \text{ rc/m}.$$

17

7. Опрокидывающие моменты $M_{\rm NT}$ и $M_{\rm xm}$ сил волнового давления $P_{\rm xm}$ и $P_{\rm xm}$ соответственно относительно внутреннего и внешнего ребер стены сооружения определяем по эпюрам волнового давления (рис. 9 и 10), разбивая их на простые фигуры: треугольники и прямоугольники

$$\begin{split} M_{xr} &= \frac{-\eta_{r}p_{2}}{2} \left(\frac{-\eta_{r}}{2} + H_{c} \right) + \frac{(p_{2} - p_{3})}{2} \frac{H}{4} \left(H_{c} - \frac{H}{4 \cdot 3} \right) + p_{3} \frac{H}{4} \left(H_{c} - \frac{H}{4 \cdot 2} \right) + \\ &+ \frac{(p_{3} - p_{4})}{2} \frac{H}{4} \left(H_{c} - \frac{H}{4} - \frac{H}{4 \cdot 3} \right) + p_{4} \frac{H}{4} \left(H_{c} - \frac{H}{2} + \frac{H}{4 \cdot 2} \right) + \\ &+ \frac{p_{5}'}{2} \left(H_{c} - \frac{H}{2} \right)^{2} + \left(\frac{p_{4} - p_{5}'}{3} \right) \left(H_{c} - \frac{H}{2} \right)^{2}, \\ M_{xr} &= \frac{7,65 \cdot 5,0}{2} \left(\frac{7,65}{3} + 13,0 \right) + \frac{5,0 - 4,15}{2} \cdot \frac{13,5}{4} \left(13,0 - \frac{13,5}{12} \right) + \\ &+ 4,15 \cdot \frac{13,5}{4} \left(13,0 - \frac{13,5}{8} \right) + \frac{4,15 - 3,5}{2} \cdot \frac{13,5}{4} \left(13,0 - \frac{13,5}{12} \right)^{2} + \\ &+ 3,5 \cdot \frac{13,5}{4} \left(13,0 - \frac{13,5}{2} + \frac{13,5}{8} \right) + \frac{3,1}{2} \left(13,0 - \frac{13,5}{2} \right)^{2} + \\ &+ \frac{3,5 - 3,1}{3} \left(13,0 - \frac{13,5}{2} \right)^{2} = 641,5 \text{ rcm/m}; \\ M_{xn} &= \frac{\eta_{n}p_{7}}{2} \left(H_{c} - \frac{2\eta_{n}}{3} \right) + \left(\frac{p_{7} - p_{8}}{2} \right) \left(\frac{H}{2} - \eta_{n} \right) \left[H_{c} - \frac{H}{2} + \frac{2}{3} \left(\frac{H}{2} - \eta_{n} \right) \right] + \\ &+ p_{8} \left(\frac{H}{2} - \eta_{n} \right) \left[H_{c} - \frac{H}{2} + \left(\frac{H}{2} - \eta_{n} \right) : 2 \right] + \frac{p_{8} - p_{9}'}{2} \frac{2}{3} \left(H_{c} - \frac{H}{2} \right)^{2} + \\ &+ p_{9'}' \frac{1}{2} \left(H_{c} - \frac{H}{2} \right)^{2}, \\ M_{xn} &= \frac{4,35 \cdot (-4,35)}{2} \left(13,0 - \frac{4,35 \cdot 2}{3} \right) - \frac{4,35 - 3,5}{2} \left(\frac{13,5}{2} - 4,35 \right) \left[13,0 - \frac{13,5}{2} + \frac{(13,5}{2} - 4,35 \right) : 2 \right] - \end{split}$$

$$-\frac{3.5-3.1}{2}\left(13.0-\frac{13.5}{2}\right)^{2}\cdot0.66-3.1\left(13.0-\frac{13.5}{2}\right)^{2}:2=-231.6 \text{ TCM/M}.$$

8. Так как длина секции, в том числе и головной, сооружения l_c =20 м меньше длины волны, то согласно и. 2.7 следует учесть горизонтальную нагрузку на вертикальную стену от дифрагированных воли со стороны огражденной акватории (рис. 11 и 12).

По формуле 1(1) и рис. 2(2) при $B_b/\overline{\lambda}$ =0,04 и H_c/H_{π} =13/15=0,87 k_b' =0,84, H=13,00+0,84(15—13)=14,68 м.

Тогда, при k=0,0628: kH=0,92; 2kH=1,84; ch kH=1,454; cth kH= = 1,38; ch 2kH=3,07.

По табл. 4(2) при $\frac{l_c}{\bar{\lambda}} = \frac{20}{100} = 0.2$ значение коэффициента снижения $k_{cH}^{"} = 0.92$. Высота дифрагированной волны h_{π} определяется согласно требованиям, изложенным в пп. 23—26 Приложения 1. Ниже приводится расчет головного участка, у которого принимают $h_{\pi} = h = 6.0$ м.

Волновые давления при совмещении вершины волны с серединой секции сооружения определим по формулам 10(6), 11(7) и 12(8)

$$\begin{aligned} z_1 &= \eta_{\rm B} = -\frac{6.0}{2} - \frac{6.0^2 \cdot 0.0628}{5} \cdot 1.38 = -3.4 \text{ M}, \quad p_1 = 0; \\ z_2 &= 0, \ p_2 = 0.92 \cdot 1.0 \left(\frac{6.0}{2} - \frac{0.0628 \cdot 6.0^2}{8} \cdot 1.38 \right) = 2.4 \text{ tc/m}^2; \\ z_3 &= 13.0 \text{ M}, \ p_3 = 0.92 \cdot 1.0 \left(\frac{6.0}{2 \cdot 1.454} - \frac{0.0628 \cdot 6.0^2}{4 \cdot 3.07} \right) = 1.7 \text{ tc/m}^2. \end{aligned}$$

18

Волновые давления при совмещении подошвы волны с серединой секции сооружения определим по формулам 13(9), 14(10) и 15(11)

$$z_{1} = 0, \quad p_{1} = 0;$$

$$z_{2} = \eta_{n} = \frac{6.0}{2} - \frac{0.0628 \cdot 6.0^{2}}{8} \cdot 1.38 = 2.6 \text{ m}, \quad p_{2} = -1.0 \cdot 2.6 = -2.6 \text{ Tc/M}^{2};$$

$$z_{3} = 13.0 \text{ m}; \quad p_{3} = -1.0 \cdot 0.92 \left(\frac{6.0}{2 \cdot 1.475} + \frac{0.0628 \cdot 6.0^{2}}{4 \cdot 3.2}\right) = -2.0 \text{ Tc/M}^{2}.$$

По вычисленным значениям p_i и z_i строим эпюры горизонтального волнового давления на сооружение дифрагированных волн со стороны огражденной акватории (рис. 11 и 12).

Рис. 11. Энюры бокового и взвешивающих давлений дифрагированной волны со стороны огражденной акватории при подходе гребия волны (размеры в м, ординаты эпюр в тс/м², силы давления в тс/м).

Суммируя площадь эпюр волнового давления, определяем значения сил волнового давления дифрагированных волн P_{xr} и $P_{x\pi}$:

при подходе к середине секции вершины дифрагированной волны

$$P_{xr} = \frac{-\gamma_{\rm B} p_2}{2} + \frac{p_2 + p_3}{2} H_{\rm c},$$
$$P_{xr} = \frac{3.4 \cdot 2.4}{2} + \frac{2.4 + 1.7}{2} \cdot 13 = 30.7 \text{ Tc/m};$$

при подходе к середине секции подошвы дифрагированной волны

$$P_{x\pi} = \frac{\eta_{\pi} P_2}{2} + \frac{P_2 + P_3}{2} (H_c - \eta_{\pi}),$$
$$P_{x\pi} = -\frac{2.6 \cdot 2 \cdot 6}{2} - \frac{2.6 + 2.0}{2} (13 - 2.6) = -27.3 \text{ rc/m}.$$

Опрокидывающие моменты M_{xr} и M_{xn} сил волнового давления P_{xr} и P_{xn} дифрагированных волн соответственно относительно внешнего и внутреннего ребер стены сооружения определяем по эпюрам волнового дав-

ления дифрагированных волн (рис. 11 и 12), разбивая их на простые фигуры:

при подходе к середине секции вершины дифрагированной волны

$$M_{xr} = \frac{-\eta_{\rm B} \rho_2}{2} \left(H_{\rm c} + \frac{\eta_{\rm B}}{3} \right) + \frac{\rho_2 - \rho_3}{2} \cdot H_{\rm c}^2 \cdot \frac{2}{3} + \rho_3 \cdot H_{\rm c} \cdot \frac{H_{\rm c}}{2},$$
$$M_{xr} = \frac{3.4 \cdot 2.4}{2} \left(13 + \frac{3.4}{3} \right) + \frac{2.4 - 1.7}{2} \cdot 13.0 \cdot 13.0 \cdot \frac{2}{3} + 1.7 \cdot 13.0 \cdot \frac{13.0}{2} = 237.1 \text{ TCM/M};$$

при подходе к середине секцин подошвы дифрагированной волны $M_{x\pi} = \frac{\eta_{\pi} p_2}{2} \left(H_c - \frac{\eta_{\pi} \cdot 2}{2} \right) + \frac{p_2 - p_3}{2} \left(H_c - \eta_{\pi} \right)^2 \frac{2}{3} + \frac{p_3 \left(H_c - \eta_{\pi} \right)^2}{2} \right)$

$$M_{x\pi} = -\frac{2,6\cdot 2,6}{2} \left(13 - \frac{2,6\cdot 2}{3}\right) - \frac{2,6-2,0}{2} \left(13 - 2,6\right)^2 \cdot \frac{2}{3} - \frac{2,0\left(13 - 2,6\right)^2}{2} = -\frac{167.5}{2} \operatorname{TCM}^{1} \operatorname{M}_{2}$$

Рис. 12. Эпюры бокового и взвешивающих давлений дифрагированной волны со стороны огражденной акватории при подходе ложбины волны (размеры в м, ординаты эпюр в тс/м², силы давлений в тс/м).

9. Взвешивающее волновое давление в горизонтальных швах массивовой кладки и по подошве сооружения принимаем равным соответствующим величинам горизонтального давления в крайних точках при линейном изменении его в пределах ширины сооружения (рис. 1(1)).

Так, силы взвешивающего волнового давления на подошву сооружения:

со стороны открытого моря (рис. 9 и 10)

$$P_{zr} = \frac{p_{5}' \cdot a}{2} = \frac{3.1 \cdot 12}{2} = 18.6 \text{ TC/M},$$
$$P_{zr} = \frac{p_{0}' \cdot a}{2} = -\frac{3.1 \cdot 12}{2} = -18.6 \text{ TC/M},$$

липии действия этих сил отстоят на 1/3 *a* = 4 м от внешней грани сооружения;

со стороны защищенной акватории от дифрагированных волн при совмещении вершины волны с серединой секции (рис. 11)

$$P_{zr} = \frac{p_3 \cdot a}{2} = \frac{1.7 \cdot 12}{2} = 10.2 \text{ tc/m},$$

при совмещении подошвы волны с серединой секции (рис. 12)

$$P_{z\pi} = -\frac{p_3 \cdot a}{2} = -\frac{2.0 \cdot 12}{2} = -12.0 \text{ tc/m},$$

линии действия этих сил отстоят на 1/3 a=4 м от внутренней грани сооружения.

Рис. 13. Эпюра взвеннивающего волнового давления на берменные массивы (размеры в м, ординаты эпюр в тс/м²).

10. Ординаты энюры взвешивающего волнового давления на берменные массивы определяем в соответствии с п. 2.10 и формулой 17(13).

Расстояния от стены до соответствующих граней массивов (рис. 13) $x_1=0; x_2=4,0$ м.

При $\frac{H}{\bar{\lambda}} = \frac{13,5}{100} = 0,135$ и $\frac{\bar{\lambda}}{\bar{h}} = \frac{100}{6} = 16,7$ по табл. 6 (4) определяем путем линейной интерполяции $\alpha_{\rm B} = 0,79$.

В нашем случае имеем:

$$k = \frac{2\pi}{\lambda} = \frac{6.28}{100} = 0.0628;$$

$$kH = 0.0628 \cdot 13.5 = 0.85;$$

$$ch \ kH = 1.38$$

$$H - H_c = 13.5 - 13 = 0.5;$$

$$k \ (H - H_c) = 0.0628 \cdot 0.5 = 0.0314;$$

$$ch \ k \ (H - H_c) = 1.0005;$$

$$\frac{ch \ k \ (H - H_c)}{ch \ kH} = \frac{1.0005}{1.38} = 0.73.$$

Подставляя эти значения в формулу 17 (13), получим при $x_i = 0$: $p_{\text{Б}i} = 0.79 \cdot 1 \cdot 6.0 \cdot 0.73 \cdot 1 = 3.46 > p_{\text{пс}} = 3.1$ (рис. 10). Соответственно пояснению к п. 2.10 принимаем

$p_{\mathrm{F}i} = p_{\mathrm{ff}} \cos x_i$.

Далее ведем расчеты в табличной форме.

Таблица 8

i	<i>х</i> _і , м	kx _i	cos kx _i	$p_{i} = p_{\Pi C} \cos kx_{i}$				
1	0	0	1	3,1				
3	4,0	0,271	0,963	3,0				

Эпюра взвешивающего давления на берменные массивы приведена на рис. 13.

Пример 2. Определить волновые нагрузки на оградительное сооружение вертикального профиля из массивовой кладки, расположенное в глубоководной зоне:

а) боковое давление со стороны открытой воды и защищенной акватории;

б) взвешивающее давление по основанию;

в) донные скорости с оценкой гранулометрического состава грунта дна.

Исходные данные: высота волн h=3,0 м; средняя длина волн $\overline{\lambda}=$ =30,0 м; глубина у сооружения $H_{\rm g}=18,0$ м; глубина до верха каменной постели H_c=15,0 м; подводная часть сооружения состоит из 6 курсов массивов высотой 2,6 м; ширина сооружения по подошве a = 12,0 м; ширина бермы $B_{\rm E}$ = 6,0 м; длина секции $l_{\rm c}$ = 20,0 м.

1. Определяем условную расчетную тлубину *H* по формуле 1(1). При $\frac{B_{\rm B}}{\overline{\lambda}} = \frac{60}{30}$ и $\frac{H_{\rm c}}{H_{\rm A}} = \frac{15}{18} = 0,83$ по рис. 2(2) находим $k_{\rm B} = 0,58$; тогда H = 15 + 0,58 (18 - 15) = 16,7 м. Отношение $\frac{H}{\bar{\lambda}} = \frac{16,7}{30} = 0,56 > 16,7$ >0,5; следовательно, сооружение находится в глубоководной зоне.

2. Определяем расчетные моменты времени, соответствующие наи-

большему значению горизонтальной волновой нагрузки при греб е волны, по формуле 3(3)

$$\cos 5t = \frac{30}{3,14 \cdot 3,0} (8 \cdot 3,14 \cdot 0,56 - 3) = 0,29.$$

3. Определяем ординаты эпюры наибольшего давления при гребне волны со стороны открытой воды по формуле 5(4) при $\cos \sigma t = 0.29$.

При

$$\gamma = 1.0 \text{ tc/m}^2$$
, $h = 3.0 \text{ m}$, $k = \frac{2\pi}{\bar{\lambda}} = \frac{2 \cdot 3.14}{30} = 0.21$,
 $\cos 2\pi t = 2\cos^2\pi t - 1 = 2 \cdot 0.23^2 - 1 = -0.83$

получим:

$$v = 1,0.30 \cdot e^{-0.27z} \cdot 0.29 - 1,0 \frac{0.21 \cdot 3.0}{2} e^{-2 \cdot 0.21z} 0.29 - 1,0 \frac{0.21 \cdot 3.0^2}{2} (1 - e^{-2 \cdot 0.21z})(-0.83) - 0.29$$

$$-1.0 \frac{0.21^{2} \cdot 3.0^{3}}{2} e^{-3 \cdot 0.21z} (-0.83) \cdot 0.29 = 0.87e^{-0.21z} - 0.08e^{-0.42z} + 0.79 (1 - e^{-0.42z}) + 0.14e^{-0.63z}$$

Дальнейшие расчеты сводим в табл. 9.

Возвышение свободной волновой поверхности в момент максимума горизонтального давления при гребне волны определится по формуле 4:

$$\eta = -3.0 \cdot 0.29 - \frac{0.21 \cdot 3.0^2}{2} \cdot 0.29^2 = -0.95$$
 M.

4. Определяем ординаты эпюры давления при впадине волны со стороны открытой воды также по формуле 5(4) с подстановкой соз оt = -1:

$$= -3.0e^{-0.21z} - 0.95e^{-0.42z} - 0.95 (1 - e^{-0.42z}) + 0.59e^{-0.63z} = -3.0e^{-0.21z} - 0.95 + 0.59e^{-0.63z}.$$

Таблица 9

z	0,21 <i>z</i>	e-0,21z	0,87 [3]	0,42 <i>z</i>	e-0,42z	0,08 [6]	1-[7]	0,79 [9]	0,63z	e-0,63z	0,14[11]	p, TC/M ² [4]-[7] + + [9]+[12]
1	2	3	4	5	6	7	8	9	10	11	12	13
0 3,0 6,0 9,0 12,0 16,7	0 0,63 1,26 1,89 2,52 3,40	1,0 0,53 0,28 0,15 0,08 0,03	0,87 0,46 0,24 0,13 0,07 0,03	0 1,26 2,52 3,78 5,04 6,8	1,0 0,28 0,08 0,02 0,01 0	0,08 0,02 0,01 0 0 0	0 0,72 0,92 0,98 0,99 1,0	0 0,57 0,73 0,77 0,78 0,79	0 1,89 3,78 5,67 7,6 10,5	1,0 0,15 0,02 0 0 0	0,14 0,02 0 0 0 0	0,93 1,16 0,98 0,90 0,85 0,82

Понижение свободной поверхности по формуле 4

$$\eta = -3.0 \cdot (-1) - \frac{0.21 \cdot 3.0^2}{2} \cdot (-1)^2 = 2.05$$
 M

Все дальнейшие расчеты также сводим в табл. 10.

5. Определим ординаты верхней части эпюры давления при гребне волны в момент наивысшего подъема уровня (при $\cos \sigma t = 1$) для расчета устойчивости элементов верхнего строения.

Таблица 10

Таблица 11

z	e-0,21z	3,0[2]	e-0.63z	0,59 [4]	р, тс/м ² -[3]- -0,95+ +[5]	z	e0,21z	3,0[2]	e-0,63z	0,59[4]	р, тс м² [3]— —0,95— —[5]
1	2	3	4	5	6	1	2	3	4	5	6
6,0 9,0 12,0 16,7	0,28 0,15 0,08 0,03	0,84 0,45 0,24 0,09	0,02 0 0 0	0,01 0 0 0	-1,78 -1,40 -1,19 -1,04	0 3,0 6,0	1,0 0,53 0,28	3,0 1,59 0,84	1,0 0,15 0,02	0,59 0,09 0,01	1,46 0,55 0,12

При подстановке всех постоянных величин формула 5(4) приводится и в этом случае к виду, приведенному в п. 4, с обратными знаками в первом и третьем слагаемых.

Максимальное возвышение гребня волны равно по формуле 4

$$\eta = -3 - \frac{0,21 \cdot 3,0^2}{2} = -3,95$$
 M.

Расчеты ординат эпюры сводим в табл. 11.

6. Так как отношение длины секции, в том числе и головной, к длине волны $\frac{l_c}{\bar{\lambda}} = \frac{20}{30} = 0,67 < 0.8$, то согласно п. 2.7 определяем горизонтальную натрузку от дифрагированных волн. В качестве примера рассмотрим головной участок оградительного сооружения, для которого принимаем $h_{\pi} = h = 3,0$ м.

Волновые давления в верхних точках определяем по формулам 10(6) и 11(7). Третья точка, в которой давление равно нулю по примечанию к табл. 4(2), принимается на глубине $z_3 = 0.3 \cdot \overline{\lambda} = 9.0$ м.

$$z_{1} = \eta_{B} = -\frac{3.0}{2} - \frac{3.0^{2} \cdot 0.21}{8} \cdot 1.0 = -1.74 \text{ m}, \quad p_{1} = 0;$$

$$z_{2} = 0, \quad p_{2} = 0.42 \cdot 1.0 \left(\frac{3.0}{2} - \frac{0.21 \cdot 3.0^{2}}{8} \cdot 1.0\right) = 0.53 \text{ TC/M}^{2}$$

(коэффициент k_{ch} " принимаем по интерполяции смежных значений из табл. 4 (2)).

При совмещении подошвы волны с серединой секции получим по формулам 13 (9) и 14 (10) соответственно:

$$z_1 = 0, \quad p_1 = 0;$$

 $z_2 = \eta_{\rm fl} = \frac{3.0}{2} - \frac{0.21 \cdot 3.0^2}{8} \cdot 1.0 = 1.26 \text{ M}, \quad p_2 = -0.42 \cdot 1.0 \cdot 1.26 = -0.53 \text{ tc/M}^2;$
 $z_3 = 9.0 \text{ M}, \quad p_3 = 0.$

7. По данным расчетов строим эпюры нагрузок для случаев: а) гребень волны с внешней стороны и ложбина дифрагированной волны — со стороны защищенной акватории (рис. 14, *a*);

б) максимальная нагрузка на верхнюю часть сооружения при гребне волны со стороны открытой воды (рис. 14, б);

Рис. 14. Волновые нагрузки на сооружение

а-при гребне волны с внешней стороны и ложбине дифрагированной голны со стороны защищенной акватории; б-максимальная нагрузка на верхнее строение в момент наивисшего подъема гребня волны (размеры в м, ординаты эпкор в тс/м²).

в) ложбина волны — с внешней стороны и пребень дифраги, ованной волны — со стороны защищенной акватории (рис. 15).

Эпюры взвешивающего давления по подошве сооружения строятся в предположении линейного изменения нагрузки по ширине.

Суммирование нагрузок и определение сдвигающих и опрокидывающих моментов пояснений не требует.

8. Максимальная донная скорость, определяемая по формуле 16(12)

$$v_{\rm Mg} = \frac{2 \cdot 0, 7 \cdot 3, 14 \cdot 3, 0}{\sqrt{\frac{3, 14}{9, 81} \cdot 3, 0} \, \text{sh}\left(\frac{4 \cdot 3, 14}{30} \cdot 18\right)} = 0, 14 \, \text{ M/c.}$$

Обращаясь к рис. 8(7), устанавливаем, что никакого крепления дна впереди стенки не нужно.

Пример 3. Определить волновые нагрузки на плотину и ее затворы. Исходные данные (рис. 16): высота волны h = 4,0 м; средняя длина волны $\overline{\lambda} = 50,0$ м; глубина у плотины H = 80 м; в верхней части плотины расположен затвор, опускающийся ниже уровня воды на 10,0 м; на уровне 10,0 м от дна находится низ донного отверстия высотой 8,0 м, перекрываемого затвором.

1. Определяем расчетный момент времени, соответствующий наибольшему значению горизонтальной волновой нагрузки при гребне волны по формуле 3(3):

$$\cos \sigma t = \frac{50}{3,14\cdot4,0\left(8\cdot3,14\frac{80}{50}-3\right)} = 0,105$$

2. Определяем ординаты эпюры максимального давления при гребне волны перед плотиной по формуле 5(4) при $\cos \sigma t = 0,105$, $2\pi = 2\cdot 3.14$

$$\gamma = 1 \text{ r/m}^3, \quad h = 4,0 \text{ m}, \quad k = \frac{2}{\lambda} = \frac{2}{50} = 0,126,$$

$$\cos 2\pi t = 2 \cdot 0,105^2 - 1 = -0,98;$$

$$p = 1,0 \cdot 4,0e^{-0,13z} \cdot 0,105 - 1,0\frac{0,13 \cdot 4,0}{2}e^{-0,26z} \cdot 0,105^2 - 1,0\frac{0,13 \cdot 4,0^2}{2}(1 - e^{-0,26z})(-0,98) - 0.005 + 0.005$$

Рис. 15. Волновые нагрузки на сооружение при ложбине с внешней стороны и гребне дифрагированной волны со стороны защищенной акватории (размеры в м, ординаты эпюр в тс/м²).

$$-1,0 \frac{0,13^2 \cdot 4,0^3}{2} e^{-0,39z} \cdot 0,105 (-0,98) = 0,42e^{-0,13z} - 0,011e^{-0,26z} + 1,02 (1 - e^{-0,26z}) + 0,055e^{-0,39z}$$

Дальнейшие расчеты сводим в табл. 12.

Рис. 16. Расчетные волновые напрузки (к примеру 3) *а*-эпюра максимальных боковых нагрузол на плотину (в том числе и на нижний затвор); б-эпюра максимальных боковых нагрузок на верхний затвор (размеры в м, ординаты эпюр в тс(м²).

z	0,13 <i>z</i>	e-0,13z	0,42 [4]	0,26 <i>z</i>	e-0,26z	0,011 [7]	1-[7]	1,02 [9]	0,39 <i>z</i>	e-0,39z	0,055 [22]	[5]-[8]+ +[10]+ +[13]
1	2	3	4	5	6	7	8	9	10	11	12	13
0 4,0 8,0 20,0 40,0 80,0	0 0,52 1,04 2,6 5,2 10,4	1,0 0,59 0,35 0,07 0,01 0	0,42 0,25 0,15 0,03 0 0	0 1,04 2,08 5,2 10,4 20,8	1,0 0,35 0,12 0,01 0 0	0,01 0 0 0 0 0	0 0,65 0,88 0,99 1,0 1,0	0 0,66 0,90 1,01 1,02 1,02	0 1,56 3,12 7,8 15,6 31,2	$ \begin{array}{c c} 1,0\\ 0,21\\ 0,04\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array} $	0,06 0,01 0 0 0	$0,47 \\ 0,92 \\ 1,05 \\ 1,04 \\ 1,02 \\ 1,02$

Возвышение свободной волновой поверхности в этот момент по формуле 4

$$\eta = 4,0.0,105 - \frac{0,13.4,0^2}{2}.0,105 = -0.43$$
 M.

3. Определяем эпюру максимального волнового давления на верхний затвор при соз оt = 1.

Формула 5(4) преобразуется в следующий вид:

$$p = 4.0e^{-0.13z} - 1.04 - 0.54e^{-0.39z}$$

Расчеты сводим в табл. 13.

Таблиц	a 13

z	e ^{-0,13z}	4,0 [3]	e-0,39z	0,54 [5]	р, тс/м ² [4]-1,04— -[6]
1	2	3	4	5	6
0 4,0 8,0 10,0	1,0 0,59 0,35 0,27	4,0 2,36 1,40 1,08	1,0 0,21 0,04 0,02	0,54 0,11 0,02 0,01	2,46 1,21 0,34 0,03

Возвышение свободной поверхности в этот момент равно (по формуле 4 при $\cos \sigma t = 1$).

$$\eta = -4,0 - \frac{0,13\cdot 4,0^2}{2} = -5,04$$
 м.

По данным расчета строим эпюры нагрузок (рис. 16).

Пример 4. Определить волновые нагрузки на сооружение с пониженной отметкой верха.

Исходные данные: высота волны h=3,0 м; средняя длина волны $\bar{\lambda}=60,0$ м, глубина перед сооружением $H_{\pi}=20,0$ м; глубина над постелью $H_c=17,0$ м; возвышение верха сооружения над спокойным уровнем $z_{\rm BC}=0,5$ м; высота берменных массивов b=1,0 м.

1. Глубина над бермой H_Б=17—1,0=16,0 м. В соответствии с п. 2.1 перед сооружением наблюдается режим стоячих волн, так как

$$H_{\rm A} = 20,0 \,\,{\rm m} > 1,5 \cdot 3,0 = 4,5 \,\,{\rm m},$$

$$H_{\rm B} = 10,0 \,\,{\rm M} > 1,25 \cdot 3,0 = 3,75 \,\,{\rm M}.$$

2. Определяем условную расчетную глубину по формуле 1(1).

При $\frac{B_{\rm B}}{\bar{\lambda}} = \frac{6.0}{60} = 0,10$ и $\frac{H_{\rm c}}{H_{\rm A}} = \frac{17}{20} = 0,85$ по рис. 2 (2) находим $k_{\rm B}' = 0,75$. Тогда H = 17 + 0,75 (20 – 17) = 19,25 м. В соответствии с п. 3 приложения 1 к СНиП II-57.75 находим, что рассчитываемое сооружение расположено в мелководной зоне, поскольку

$$H = 19,25 \text{ M} < 0,5\lambda = 0,5 \cdot 60 = 30 \text{ M}.$$

3. Определяем расчетные моменты времени, характеризуемые значениями сов от согласно п. 2.2

~~

$$\cos \sigma t = \frac{60}{3,14 \cdot 3,0 \left(8 \cdot 3,14 \frac{19,75}{0.0} - 3\right)} = 1,25 > 1,0.$$

Рис. 17. Эпюры бокового и взвениивающего давлений стоячих воли на сооружение неполного профиля при подходе гребня волны с внешней стороны (размеры в м, ординаты эпюр в тс.м²).

Рис. 18. Эпюры бокового и взвешивающего давлений на сооружение неполного профиля при подходе ложбины волны с внешней стороны (размеры в м, ординаты энюр в тс/м²).

Максимальное значение горизонтальной волновой нагрузки совпадает по времени с моментом подхода к стене вершины волны, в связи с чем расчеты следует производить при соз $\sigma t = 1$ и соз $\sigma t = -1$.

4. Определяем положение волновой поверхности у вертикальной стены по формуле 2(2).

В нашем случае при $k = \frac{2\pi}{\overline{\lambda}} = \frac{6,28}{60} = 0,105$, kH = 2,03, cth kH = = 1,04 имеем:

а) при подходе к стене вершины волны

$$\eta_{\rm B} = -3.0 \cdot 1.0 - \frac{0.105 \cdot 3.0^2}{3} \cdot 1.04 \ (+1)^2 = -3.5 \ {\rm M}$$
 (откладывается кверху);

б) при подходе к стене подошвы волны

$$\eta_{\rm III} = -3.0 (-1.0) - \frac{0.105 \cdot 3.0^2}{3} \cdot 1.04 (-1)^2 = 2.5$$
 м (откладывается книзу).

При сравнении отметки верха сооружения $z_{\rm BC} = -0.5$ м и отметки возвышения вершины волны над расчетным уровнем $\eta_{\rm B} = -3.5$ м оказывается, что рассматриваемое сооружение относится к так называемым сооружениям неполного профиля, через верх которых происходит перелив волны, в связи с чем его расчет следует вести в соответствии с п. 2.5, вводя коэффициент снижения $k_{\rm CH}$ к эпюрам волнового давления, действующего на вертикальную стену полного профиля при подходе вершины волны. В случае подхода к стене подошвы волны снижения волнового давления не произойдет, так как верх сооружения возвышается над спокойным уровнем.

Выше нами определено, что сооружение находится в мелководной зоне, поэтому ординаты эпюры волнового давления рассчитываем в соответствии с п. 2.4. Расчет ведем в табличной форме при

$$\frac{h}{\bar{\lambda}} = \frac{3}{60} = 0,05$$
 и $\frac{\bar{\lambda}}{H} = \frac{60}{19,25} = 3,1.$

Таблица 14

Заглубление точек z, м		Зна коэфф тов <i>k</i> <i>k</i> ₈ ;	чения онциен- 2 — k ₅ ; k ₉	Значения ординат эпюры волнового давления на вертикальную стену полного профияя, тс/м ²			Значени эпюры давления кальну неполног	я ординат волнового и на вертя- лю стену о профиля, с/м ²
η_{f} z_{BC} 0 0,25/1 0,5/1 1/ 0 η_{f} 0,5/1 H	$-3,5 \\ -0,5 \\ 0 \\ 4,81 \\ 9,63 \\ 19,25 \\ 0 \\ 2,5 \\ 9,63 \\ 19,25 \\ 19,25 \\$	k2 k3 k4 k5 k8 k9		p_1 p_{BC} $p_2 = k_2 \gamma h$ $p_3 = k_3 \gamma h$ $p_4 = k_4 \gamma h$ $p_5 = k_5 \gamma h$ p_6 $p_7 = -\gamma \eta_{\Pi}$ $p_8 = -k_8 \gamma h$ $p_9 = -k_8 \gamma h$	$ \begin{vmatrix} 0 \\ 1,8 \\ 2,2 \\ 1,3 \\ 0,8 \\ 0,55 \\ 0 \\ -2,5 \\ -1,5 \\ -1,15 \end{vmatrix} $	0,79	$p_{\rm BC}$ $p_2^{\rm CH}$ $p_3^{\rm CH}$ $p_4^{\rm CH}$ $p_5^{\rm CH}$ $p_{\rm p}^{\rm CH}$ $p_p^{\rm p}$	$\begin{array}{r} & \\ 1,4 \\ 1,75 \\ 1,04 \\ 0,65 \\ 0,45 \\ 0 \\2,5 \\1,5 \\1,15 \end{array}$

Эпюры волнового давления приведены на рис. 17 и 18.

Примечания: 1. Значение ординаты эпюры волнового давления рвс получаем путем линейной интерполяции значений ординаты эпюры p1 и p2. 2. Значение коэффициента kcm определяем по формуле 9(5).

Нагрузки от разбивающихся и прибойных волн на сооружения вертикального профиля

2.11. Расчет сооружений на давление разбивающихся волн со стороны открытой акватории должен производиться при глубине над бермой $H_5 < 1,25h$ к.глубине до дна $H_{\pi} \leq 1,5h$ (рис. 19(8)).

Горизонтальную нагрузку P_{xr} , тс/м, от разбивающихся волн необходимо принимать по площади эпюры бокового волнового давления, при этом величины p, тс/м², для значений ординат z, м, следует определять по формулам:

$$z_1 = -h, p_1 = 0;$$
 18 (14)

$$z_2 = 0, \quad p_2 = 1,5\gamma h;$$
 19 (15)

$$z_3 = H_c, \quad p_3 = \frac{\gamma h}{\operatorname{ch} \frac{2\pi}{\lambda} H_c}.$$
 20 (16)

Рис. 19(8). Эпюры давления разбивающихся волн на вертикальную степу.

Вертикальную нагрузку P_{zr} , тс/м, от разбивающихся воли следует принимать равной площади эпюры взвешивающего волнового давления (с высотой p_3) и определять по формуле

$$P_{zr} = \mu \, \frac{p_3 a}{2}, \qquad \qquad 21 \, (17)$$

где и — коэффициент, принимаемый по табл. 15(5).

Таблица 15(5)

Максимальную скорость воды v_{MB} , м/с, над поверхностью бермы перед вертикальной стеной при разбивающихся волнах необходимо определять по формуле

$\frac{a}{H_{a}-H_{c}}$	3	5	7	9	
Коэффициент р.	0,7	0,8	0,9	1,0	

$$v_{\rm ME} = \sqrt{\frac{gh}{ch\frac{2\pi}{\bar{\lambda}}H_c}}.$$
 22 (18)

2.12. Расчет сооружений на давление прибойных волн со стороны открытой акваториии должен производиться при глубине $H_{\rm A} \leq H_{\rm KP}$ на примыкающем к стече участке дна протяженностью не менее $0.5\overline{\lambda}$, м

(рис. 20(9)); при этом возвышение вершины максимальной прибойной волны η_{BR} , м, над расчетным уровнем следует определять по формуле

$$\eta_{\rm BR} = -0.5 H_{\rm c} - h_{\rm RD}, \qquad 23\,(19)$$

где h_{пр} — высота прибойной волны, м; H_{кр} — критическая глубина, м.

Горизонтальную нагрузку P_{xr} , тс/м, от прибойных волн необходимо принимать по площади эпюры бокового волнового давления; при этом величины p, тс/м², для значений ординат z, м, должны определяться по формулам:

$$z_1 = -h_{np}, \qquad p_1 = 0; \qquad 24 (20)$$

$$z_2 = -\frac{1}{3} h_{\pi p}, \qquad p_2 = 1.5 \gamma h_{\pi p}; \qquad 25 (21)$$

Рис. 20 (9). Эпюры давления прибойных волн на вертикальную стену а-с верхом постели на уровне дна; б-с возвышающейся над дном постелью.

$$z_3 = H_c$$
, $v_3 = \frac{\gamma h_{np}}{ch \frac{2\pi}{\overline{\lambda_{np}}} H_c}$, 26 (22)

где $\overline{\lambda}_{np}$ — средняя длина прибойной волны, м.

Вертикальную нагрузку P_{2r} , тс/м, от прибойных волн следует принимать равной площади эпюры взвешивающего волнового давления (с высотой p_3) и определять по формуле

$$P_{zr} = 0.7 \left(\frac{p_3 a}{2}\right).$$
 27 (23)

Максимальная донная скорость прибойной волны v_{MR} , м/с, перед вертикальной стеной со стороны открытой акватории должна определяться по формуле

28 (24)

 $\frac{gh_{\rm np}}{\cosh\frac{2\pi}{5}H_{\rm c}}$

Пример 5. Определить волновые нагрузки на оградительные сооружения вертикального профиля при действии разбивающихся волн.

Исходные данные: высота волн h=5,0 м; средняя длина волн $\lambda = -75,0$ м; глубина перед сооружением $H_{\rm R} = 12,0$ м; глубина до верха каменной постели $H_{\rm c} = 7,0$ м; ширина сооружения по подошве a=8,0 м; глубина до берменных массивов $H_{\rm b} = 5,7$ м.

Рис. 21. Эпюры давления разбивающихся волн (размеры в м, ординаты эпюр в тс;м²).

1. В рассматриваемом примере $H_{\rm B}$ =5,7 м<1,25h=6,25 м н $H_{\rm A}$ = =12 м>1,5h=7,5 м. Поэтому в соответствии с п. 2.11, производим расчет сооружения на действие разбивающихся воли.

2. Эпюру бокового давления (рис. 21) строим по 3 точкам по формулам 18(14); 19(15) и 20(16):

$$z_{1} = -h = -5,0 \text{ M}, \quad p_{1} = 0;$$

$$z_{2} = 0, \quad p_{2} = 1,5 \cdot 1,0 \cdot 5,0 = 7,5 \text{ tc/M}^{2};$$

$$z_{3} = H_{c} = 7,0 \text{ M}, \quad p_{3} = \frac{5,0}{\text{ch} \frac{2 \cdot 3,14}{75} \cdot 7,0} = 4,26 \text{ tc/M}^{2}.$$

3. Суммарная сдвигающая сила (по эпюре):

$$P_{xr} = \frac{7.5 \cdot 5.0}{2} + 4,26 \cdot 7,0 + \frac{7.5 - 4,26}{2} \cdot 7,0 = 59,9 \text{ tc/m}.$$

4. Определение взвешивающего давления по формуле 21 (17):

$$\frac{a}{H_{A}-H_{C}} = \frac{8.0}{12.0-7.0} = 1.6 < 3.0$$
, но табл. 15 (5) $\mu = 0.7$.
 $P_{zr} = 0.7 \frac{4.26 \cdot 8.0}{2} = 12.0$ тс/м.

31

5. Максимальная донная скорость над поверхностью бермы перед вертикальной стенкой (по формуле 22(18))

$$v_{\rm MA} = \sqrt{\frac{9,81\cdot5,0}{\rm ch}\frac{2\cdot3,14}{75}\cdot7,0} = 6.5$$
 M/c.

6. В соответствии с формулой 32 определяем крупность камня для защитного покрова (при $\dot{k}_m = 1.0$)

$$d_{50} = \frac{6,5^2 \cdot 1,0}{1,55^2 \cdot (2,6-1,0) \cdot 9,81} = 1,1$$
 M.

Пример 6. Определить волновые нагрузки на оградительное сооружение при действии прибойных волн.

Рис. 22. Эпюры давления прибойных волн (размеры в м, ординаты эпюр в тс/м2).

Исходные данные: высоты волн на глубокой воде $h_{r,1,\%} = 5,0$ м н $\overline{h}_{r,\pi} =$ 2,3 м; средняя длина волн $\overline{\lambda}_{r\pi} = 75,0$ м; средний период волн $\tau_{r\pi} = 6,9$ с; глубина перед сооружением $H_c = 4,5$ м; ширина сооружения a = 6,0 м; уклон дна i = 0.02.

1. Проверим наличие режима прибойных волн. В соответствии с п. 21 приложения 1 определим критическую глубину.

Полагая в первом приближении $\frac{h_l}{g\bar{\tau}^2} = \frac{h_{r.r.,1\%}}{g\bar{\tau}^2} = \frac{5.0}{9.81 \cdot 6.9^2} = 0,0107,$ по кривой 2 на рис. 125 (42) определяем $\frac{H_{\text{кр.I}}}{\bar{\lambda}_{n-}} = 0,087$, откуда $H_{\text{кр.I}} =$ $= 0,087 \cdot 75 = 6,5$ M.

Согласно требованиям, изложенным в п. 17, по параметру $\frac{H_{kpl}}{\bar{\lambda}_{ra}} =$ = 0,087 определяем по рис. 125 (42) и табл. 105 (39) значения коэффициентов $k_{\rm r} = 0.94$ и $k_{\rm n} = 0.85$; из условий задачи $k_{1\%} = \frac{h_{\rm ral\%}}{\bar{h}_{\rm ral}} =$ $=\frac{5,0}{2,3}=2,2.$

По формуле 191 (153) определим h_i (при $k_0 = 1,0$):

 $h_l = 0.94 \cdot 0.85 \cdot 2.2 \cdot 2.3 = 4.0$ M.

По уточненному значению $\frac{h_l}{g\bar{\tau}^2} = \frac{4.0}{9.81\cdot6.9^2} = 0,0086$ и по кривой 2 на рис. 125 (42) определим $\frac{H_{\kappa p11}}{\bar{\lambda}_{r,r}} = 0.07, \bar{\lambda}_{r,r}$ откуда окончательно $H_{\rm KD} = H_{\rm KDII} = 0,07 \cdot 75 = 5,3$ M.

Эта критическая глубина при уклоне дна i=0,02 и глубине перед сооружением $H_c = 4.5$ м будет отстоять от него на расстоянии

$$l = \frac{H_{\rm KP} - H_{\rm C}}{l} = \frac{5.3 - 4.5}{0.02} = 40 > \frac{\overline{\lambda}_{\rm F.7}}{2} = \frac{75}{2} = 37.5 \text{ m}.$$

Проверим, не произойдет ли на подходах к сооружению второго обрушения. По формуле 195(155) приложения

$$H_{k2} = 0,56 \cdot 5,3 = 3,0$$
 м

(коэффициент k_m=0,56 — по табл. 109(40)). Так как глубина перед сооружением H_c=4,5 м больше вычисленной, то второго обрушения не произойдет.

2. В соответствии с п. 20 приложения 1 определим элементы прибойных волн.

 $\frac{H}{\bar{\lambda}_{r,a}} = \frac{4.5}{75} = 0,06$, при 1: $m_a = 0,02$ по графику 2, приведенному на рис. 125 (42), получаем $\frac{h_{пр1\%}}{g^{\tau^2}} = 0,007$, откуда $h_{пр1\%} = 0,007 \cdot 9,81 \cdot 6,9^2 = 3,3$ м; длину прибойной волны определим по огибающей кривой рис. 123 (41)

$$\frac{\overline{\lambda_{\pi p}}}{\overline{\lambda_{r \pi}}} = 0,7, \text{ откуда } \overline{\lambda_{\pi p}} = 0,7 \cdot 75 = 52,5 \text{ м.}$$

3. Эпюру бокового давления (рис. 22) строим по 3 точкам по формулам 24 (20), 25 (21), 26 (22):

$$z_{1} = -h_{\Pi p} = 3,3 \text{ M}, \qquad p_{1} = 0;$$

$$z_{2} = -\frac{1}{3} \cdot 3,3 = -1,1 \text{ M}, \qquad p_{2} = 1,5 \cdot 1,0 \cdot 3,3 = 4,95 \text{ Tc/M}^{2};$$

$$z_{3} = H_{c} = 4,5 \text{ M}, \qquad p_{3} = \frac{1,0 \cdot 3,3}{\text{ch} \frac{2 \cdot 3,14}{52,3} 4,5} = 2,87 \text{ Tc/M}^{2}$$

4. Суммарная сдвигающая сила (по эпюре)

$$P_{xr} = \frac{4,95(3,3-1,1)}{2} + 2,87(4,5+1,1) + \frac{4,95-2,87}{2}(4,5+1,1) = 5,45+16,05 + 5,8 = 27,3 \text{ rc/m}.$$

5. Максимальное возвышение вершины прибойной волны у стенки по формуле 23(19)

$$\eta_{BII} = -0.5 \cdot 4.5 - 3.3 = -5.55$$
 M.

6. Вэвешивающая нагрузка по формуле 27 (23)

$$P_{zr} = 0.7 \frac{2.87 \cdot 6.0}{2} = 6.0 \text{ tc/m}.$$

7. Максимальная донная скорость перед сооружением по формуле 28(24)

$$v_{\rm Ma} = \sqrt{\frac{9,81\cdot3,3}{ch\frac{2\cdot3,14}{52,2}}} = 5,3$$
 M/c.

3

8. В соответствии с формулой 32 определяем крупность камня для защитного покрова (при $k_m = 1,0$)

где k_{Δ} и $k_{H\Pi}$ — коэффициенты, принимаемые по табл. 16 (6); k_{c} — коэффициент, принимаемый по табл. 17 (7); $k_{\rm HF}$ — коэффициент, принимаемый по графикам рис. 23 (10); $h_{1\%}$ — высота бегущей волны обеспеченностью 1%, м;

 h_{rals} — высота бегущей волны при глубине $H \ge 0.5\overline{\lambda}$ обеспеченностью 1%, м.

Примечание. При глубине перед сооружением H<2hi % коэффициент k_{нг} необходимо принимать для значений пологости волны, указанной на рис. 23(10) в скобках при глубине $H = 2h_{1.96}$.

Характеристика крепления откоса	Относительная шероховатость атость <u> </u>	Коэффи- циент <i>к</i> д	Коэффи- циент ^к нп
Бетонными (железо- бетонными) плитами Гравийно-галечнико- вое, каменное или креп- ление бетонными (же- лезобетснными) блока- ми	Менее 0,002 0,005—0,01 0,02 0,05 0,1 Более 0,2	1 0,95 0,9 0,8 0,75 0,7	0,9 0,9 0,85 0,8 0,7 0,6 0,5
Примечание. сти∆, м, следует при зерен материала креп. бетонных (железобето	Характерный р нимать равным ления откоса или нных) блоков	азмер шерол среднему ди и среднему р	ковато- аметру азмеру

Таблица 16(6)

Таблица 17 (7)

	Значение та	0,4	0,4-2	35	Более 5		
Коэффици-	для скорости ветра 20, м/с, и более	1,3	1,4	1,5	1,6		
ент k _c	для скорости ветра 10, м/с, и менее 1,1 1,1 1,1 1,2						
Примечание. Значение $m_{\alpha} = \operatorname{ctg} \alpha$, где α —угол накло- на откоса к горизонту, град.							

При скорости ветра 10<W<20 значения коэффициентов определятся по табл. 17(7) путем интерполяции.

Высоту наката на откос волн *i*, %, обеспеченности по накату $h_{\mu i}$ необходимо определять умножением полученного по формуле 29 (25) значения $h_{\mu i}$ на коэффициент k_i , принимаемый по табл. 18 (8).

Таблица 18(8)

Обеспеченность по накату <i>і</i> , %	0,1	1	2	5	10	30	50
Коэффициент k _i	1,1	1,0	0,96	0,91	0,86	0,76	0,68

При подходе фронта волны к сооружению под углом β, град, со стороны открытой акватории величину наката волн на откос следует уменьшать умножением на коэффициент k_в принимаемый по табл. 19(9).
Таблица 19(9)

Значение углаβ, град	0	10	20	30	40	50	60
Коэффициент к ₃	1	0,98	0,96	0,92	0,87	0,82	0 ,76

Примечание. При определении высоты наката волн на песчаные и гравийногалечниковые пляжи необходимо учитывать изменение уклона пляжа во время шторма. Наибольшее понижение пляжа в створе уреза воды следует принимать равным 0,3h, м, с выклиниванием на нулевые значения на берегу до высоты наибольшего наката, а в море до глубины $H=H_{\rm KD}$, м, для размываемых грунтов или на глубине $H=H_{\rm KII}$, м, для неразмываемых грунтов (где h, $H_{\rm KD}$ и $H_{\rm KII}$ — соответственно высота волны и глубина воды в створе первого и последнего обрушения, м).

1. Возвышение гребня сооружения над расчетным уровнем воды определяется по формуле, приведенной в гл. СНиП «Плотины из грунтовых материалов»:

$$h_{\Gamma} = \Delta h + h_{\text{H1}} + a, \qquad 30$$

где Δh — высота подъема уровня воды, обусловленная встровым нагоном или другими воздействиями; $h_{\rm H1}$ — высота наката расчетных волн на откос, определяемая по формуле 29(25); а — запас высоты сооружения.

При отсутствии данных наблюдений высота ветрового нагона Δh определяется по приводимой в приложении 1 формуле 183(148).

Запас по высоте сооружения, независимо от его класса, следует учитывать для всех типов сооружений, разрушение которых может вызвать последствия катастрофического характера.

Величину запаса следует принимать $a \ge 0, 1h_{1\%}$, но не менее 0,5 м.

Примечание. В тех случаях, когда по условиям эксплуатации и надежности крепления гребня и низового откоса переплеск и перекатывание отдельных волн через гребень сооружения допустимы, запас высоты можно принимать менее 0,5 м. Уменьшение высоты запаса должно быть обосновано соответствующими исследованиями.

2. Верхнюю границу крепления следует принимать на отметке гребия сооружения, определяемой по формуле 30.

Нижняя граница крепления определяется из условия неразмываемости откоса при таком сочетании отметок уровня воды и соответствующих им элементов воли, при которых у нижнего края крепления составляющая скорости волнового движения в плоскости откоса (донная скорость) v_x имеет наибольшее значение. Откос должен быть укреплен до такой глубины H_x , на которой $v_x \leq v_{\text{доп}}$, где $v_{\text{доп}}$ — неразмывающая скорость для прунта откоса.

Глубина H_{x0} , на которой скорость v_x волнового движения равна неразмывающей скорости v_{gon} , определяется по формуле

$$H_{x0} = \frac{\bar{\lambda}}{4\pi} \operatorname{arsh} \frac{\pi n^2 h_{1\%}^2 g}{\bar{\lambda} v_{\text{don}}^2},$$
 31

где n — коэффициент, учитывающий влияние пологости волн $\frac{\lambda}{h_{1\%}}$ на величину донной скорости, определяется по табл. 5 (3).

Условие $v_x \ll v_{\text{доп}}$ у нижнего края крепления должно быть обеспечено при любом уровне воды в пределах призмы сработки водохранилища.

Неразмывающую скорость частиц грунта откоса следует определять по графику, представленному на рис. 8(7) при $d_{10} < 100$ мм. При $d_{10} > > 100$ мм надлежит пользоваться формулой:

$$v_{\text{gon}} = 1,55 k_m \sqrt{\frac{(\gamma_{\text{M}} - \gamma_{\text{B}}) g d}{\gamma_{\text{B}}}},$$
 32

где d — средний диаметр зерен грунта, слагающего откос; принимается $d = d_{50}$. где d_{50} — крупность зерен грунта, мельче которых в пробе содержится 50% материала по весу;

 $\gamma_{\rm M}$ — Удельный вес материала; $\gamma_{\rm B}$ — удельный вес воды; k_m — коэффициент, учитывающий влияние крутизны откоса на величину скорости трогания зерен грунта. Численные значения k_m приведены в табл. 20.

Таблица 20

m _x ctgx	10	5	4	3	2,5	2
k _m	0,96	0,85	0,8	0,68	0,35	0,25

Отметка нижней границы крепления принимается по формуле:

$$\nabla_{\mathrm{H}} = \nabla_{\mathrm{YB}} - 1, 1H_{x_0}, \qquad 33$$

где ∇_{yB} — отметка уровня воды; H_{x_0} — глубина, определяемая по формулам 31 и 32; 1,1 — коэффициент запаса.

Примечание. Отметку нижней праницы крепления и размеры элементов его конструкции следует определять при максимальном, нормальном и минимальном уровнях воды, рис. 25(12), вводя в расчет элементы волн, соответствующие указанным уровням воды. Из полученных значений следует принимать наиневыгоднейшие.

Рис. 24 (11). Эпюра максимального расчетного волнового давления на откос, укрепленный плитами.

2.15. Эпюра волнового давления на откос при $1,5 \le m_a \le 5$, укрепленный монолитными или сборными плитами, должна приниматься по рис. 24(11); при этом максимальное расчетное волновое давление ρ_2 , тс/м², необходимо определять по формуле

$$p_2 = k_{\Pi 0} k_{\Pi B} \overline{p_2} \gamma h,$$
 34.(26)

где kno — коэффициент, определяемый по формуле

$$k_{\rm mo} = 0.85 + 4.8 \, \frac{h}{\bar{\lambda}} + m_{\alpha} \left(0.028 - 1.15 \, \frac{h}{\bar{\lambda}} \right); \qquad 35 \, (27)$$

к_{пв} — коэффициент, принимаемый по табл. 21 (10);

лаксимальное относительное волновое давление на откос в точке 2 (рис. 24 (11)), принимаемое по табл. 22 (11).

Таблица	21 ((10)
---------	------	------

Пологость волны $\frac{\overline{\lambda}}{h}$.	10	15	20	25	35
Коэффициент к _{пв}	1	1,15	1,3	1,35	1,48

Таблица 22(11)

Высота волны h, м	0,5	1	1,5	2,0	2,5	3,0	3,5	>4
Максимальное отно- сительное волновое дав- ление, $\overline{p_2}$	3,7	2,8	2,3	2,1	1,9	1,8	1,75	1,7

Ордината z₂, м, точки 2 приложения максимального расчетного волнового давления p₂ должна определяться по формуле

$$z_2 = A + \frac{1}{m_a^2} (1 - \sqrt{2m_a^2 + 1}) (A + B),$$
 36 (28)

где А и В-величины, м, определяемые по формулам:

$$A = h \left(0.47 + 0.023 \frac{\overline{\lambda}}{h} \right) \frac{1 + m_a^2}{m_a^2}; \qquad 37 (29)$$

$$B = h \left[0.95 - (0.84m_a - 0.25) \frac{h}{\lambda} \right], \qquad 38 (30)$$

Рис. 25 (12). Графики для определения относительного волнового противодавления.

Ордината z₃, м, соответствующая высоте наката волн на откос, должна определяться согласно требованиям п. 2.14 настоящей главы.

На участках крепления по откосу выше и ниже точки 2 (рис. 24(11)) следует принимать меньшие значения ординат эпюры волнового давления p, тс/м², на расстояних:

при $l_1 = 0,0125 L_{\alpha}$ и $l_3 = 0,0265 L_{\alpha}$ м, $p = 0,4 p_2$; при $l_2 = 0,0325 L_{\alpha}$ и $l_4 = 0,0675 L_{\alpha}$ м, $p = 0,1 p_2$, где

$$L_{a} = \frac{m_{a}\bar{\lambda}}{\sqrt[4]{m_{a}^{2} - 1}}, \text{ M}$$
 39 (31)

Ординаты эпюры волнового противодавления *р*_{пд}, тс/м², на плиты крепления откосов следует определять по формуле

$$p_{\Pi \pi} = k_{\Pi 0} k_{\Pi B} p_{\Pi \pi} \gamma h,$$
 40 (32)

где p_{пд} — относительное волновое противодавление, принимаемое по графикам рис. 25 (12).

2.16. Нагрузки от волн на откос, укрепленный плитами, для сооружений I и II классов при высоте волн более 1,5 м обеспеченностью 1% в системе допускается определять методами, в которых учитывается нерегулярность ветровых волн, при надлежащем обосновании.

При наличии берм и переменных уклонов отдельных участков сооружений откослого профиля нагрузки от волн на крепления откосов необходимо определять по данным лабораторных исследований.

Пример 7. Определить верхнюю и нижнюю границы крепления (рис. 26), толщину плит и построить эпюру волнового давления на откос.

Исходные данные: расчетные элементы волн $h_{1\%}=3$ м, $\lambda=30$ м; коэффициент верхового откоса плотины $m_{\alpha}=4$ ($\alpha=14^{\circ}$); верховая призма откоса плотины отсыпана из песчано-гравелистого грунта со средней крупностью d=20 мм; глубина воды перед плотиной $H_{n,n}=40$ м; протяженность охваченной ветром акватории X=100 км; средняя глубина во-

Рис. 26. Схема размещения плит на откосе (к примеру 7).

дохранилища на линии разгона волн H = 30 м; расчетная скорость ветра W = 30 м/с; подход волн к сооружению фронтальный $\beta = 0$; плиты железобетонные, сборные с неомоноличенными швами; ширина открытых стыков между плитами 2 см; удельный вес материала плит $\gamma_M = 2,4$ тс/м³; длина ребра плиты в направлении, перпендикулярном урезу воды, $B_{\pi\pi} = -6$ м.

Примем отметку НПУ за начало отсчета отметок ∇ НПУ=0. Отметка основания плотины — 40 м.

1. Определим отметку гребня плотины h_r по формуле 30, вычислив сначала необходимые для этой цели величины Δh , $h_{H1\%}$ и a.

По формуле 183(148), приведенной в приложении 1,

$$\Delta h = 2 \cdot 10^{-6} \frac{30^2 \cdot 100000}{9,81 \cdot 30} \cdot 1 = 0,6 \text{ M}.$$

По формуле 29(25), табл. 16(6)—19(9) и рис. 23(10):

$$h_{\rm H1\%} = 1.0.9 \cdot 1.5 \cdot 0.91 \cdot 1.3.0 = 3.7$$
 M;

$$a = 0.1 \cdot h_{1\%} = 0.1 \cdot 3 = 0.3 < a_{\text{MMH}} = 0.5$$
 M,

принимаем запас высоты а = 0,5 м.

Отметка гребня плотины по формуле 30

$$h_{\Gamma} = 0.6 + 3.7 + 0.5 = 4.8$$
 M;

принимаем $\nabla_{rp} = h_r = +4.8$ м.

2. Определим отметку нижней границы крепления H_x . Для этого найдем сначала величину неразмывающей скорости для грунта d = 20 мм верховой призмы откоса по графику, приведенному на рис. 8(7).

 $v_{\text{доп}} = 1,1$ м/с, тогда H_{x_0} определится по формуле 31 при n = 0,7 по табл. 5(3)

$$H_{x_{u}} = \frac{\bar{\lambda}}{4\pi} \operatorname{arsh} \frac{\pi n^{2} h_{1\%}^{2} g}{\bar{\lambda} v_{\text{gon}}^{2}} = \frac{30}{4\pi} \operatorname{arsh} \frac{\pi \cdot 0.7^{2} \cdot 3.0^{2} \cdot 9.81}{30 \cdot 1.1^{2}} = 7.2 \text{ M}.$$

Примем отметку нижнего края крепления по формуле 33 при ∇_{yB} = 0:

$$\nabla_{\rm H} = -1, 1 \cdot 7, 2 = -7, 9$$
 M

3. Определим толщину плит в зависимости от их местоположения на откосе. Схема размещения плит на откосе показана на рис. 26, а определение их толщи сведено в табл. 23. Ось ох направлена вниз по откосу, начало оси на линии уреза воды, х—абсцисса нижнего края плиты.

Таблица	23
---------	----

				Нумера	ция плит	<u></u>			
Расчетные величины	1	2	3	4	5	6	7	8	Примечания
х. М		10	-4	+2	8	14	20	26	
λ. M	30	30	30	30	30	30	30	30	
xIX	0.53	0.33	- 0.13	+0.07	+0.27	+0.47	+0.67	+0.87	
$B_{\mu\pi}$, M	6	6	6	6	6	6	6	6	
$B_{\Pi A}/\bar{\lambda}$	0,2	0,2	0,2	0,2	0,2	0,2	2,0	0,2	
\bar{p}_{nn} по рис. 25(12)	0	0	0,1	0,18	0,195	0,16	0,11	0,083	
<i>к</i> _{по} по формуле	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	
35(27) Б. по табл. 21(10)	10	10	10	10	10	10	10	10	•
$\chi_{\Pi B}$ no raos. 21(10) $\gamma_{.}$ TC/M ³	1.0	1,0	1.0	1.0	1,0	1.0	i.ŏ	i.ŏ	
h_{1} , M	3	3	3	3	3	3	3	3	
$p_{\Pi A} = k_{\Pi O} k_{\Pi B} \overline{p}_{\Pi A} \times $	0	0	0,29	0,53	0,57	0,47	0,32	0,24	По формуле 40(32)
$\gamma - \gamma T c/M^3$	24	2.4	24	2 07	14	14	14	1.4	Учтена сте-
tm t, τe m cos α	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97	Пень Взве- Шивания Плит
$\hat{\mathbf{c}}_0 = \frac{p_{\Pi A}}{(\gamma_M - \gamma) \cos \alpha}, \mathbf{M}$	0	0	0,12	0,27	0,42	0,34	0,24	0,18	Из условия предотвра- цения
Толщина плит, дм, с учетом коэф- фициента запа- са 1.1	0,15.	0,15	0,15	0,30	0,45	0,40	0,25	0,20	всплытия Толщины плит 1—2 назначены по конст-
$\delta = 1, 1\delta_0$ (величины δ округлены до значений, кратных 5 см.)									руктивным соображе- ниям

4. Построим эпюру максимального (расчетного) волнового давления на плиты в соответствии со схемой, представленной на рис. 24(11). В соответствии с формулами 36(28)—38(30) и ранее вычисленными значениями Δh и h_{н1%} имеем:

$$A = 3.0 \left(0.47 + 0.023 \frac{30}{3} \right) \left(\frac{1+4.0}{4.0^2} \right) = 2.2 \text{ m};$$

$$B = 3.0 \left[0.95 - (0.84 \cdot 4 - 0.25) \frac{3.0}{30} \right] = 0.19 \text{ m};$$

$$z_2 = 2.2 + \frac{1}{4.0^2} (1 - 2 \cdot 4.0^2 + 1)(2.2 + 0.19) = 1.5 \text{ m};$$

$$z_3 = 0.6 + 3.7 = 4.3 \text{ m}.$$

Волновое давление в точке 2 (точка максимального удара волны) определяется по формулам 34 (26), 35 (27) и табл. 21 (10) и 22 (11)

$$p_2 = 0.98 \cdot 1 \cdot 1.8 \cdot 3.0 = 5.3 \text{ tc/m}^2.$$

Определяем положение остальных характерных точек эпюры и волновое давление в них по формулам 39 (31)

$$\begin{split} l_1 &= 0.0125 \frac{4 \cdot 30}{\sqrt[4]{4,0^2 - 1}} = 0.0125 \cdot 61, 2 = 0.8 \text{ m}, \quad p = 0.4p_2 = 0.4 \cdot 5, 3 = 2.12 \text{ tc/m}^2; \\ l_2 &= 0.0325 \cdot 61, 2 = 2.0 \text{ m}, \quad p = 0.1p_2 = 0.53 \text{ tc/m}^2; \\ l_3 &= 0.0265 \cdot 61, 2 = 1.6 \text{ m}, \quad p = 0.4p_2 = 2.12 \text{ tc/m}^2; \\ l_4 &= 0.0675 \cdot 61, 2 = 4.2 \text{ m}, \quad p = 0.1p_2 = 0.53 \text{ tc/m}^2. \end{split}$$

Эпюра волнового давления на плиты представлена на рис. 27.

Рис. 27. Эпюра максимального расчетниго волнового давления на плиты (к примеру 7).

2.17. При проектировании сооружений откосного профиля (или предусматривая крепление откосов) из рваного камня, обыкновенных и фасонных бетонных или железобетонных блоков вес отдельного элемента *G* или *G*_z, тс, соответствующий состоянию его предельного равновесия от действия ветровых волн, необходимо определять:

при расположении камня или блока на участке откоса от верха сооружения до глубины z=0,7h по формуле

$$G = \frac{\mu_{\phi\gamma_M} h^{2\lambda}}{\left(\frac{\gamma_M}{\gamma} - 1\right)^3 \sqrt{1 + m_a^3}};$$
41(33)

то же при z > 0,7h по формуле

$$G_z = Ge^{-\left(\frac{7,5z^2}{\hbar\bar{\lambda}}\right)},\qquad 42(34)$$

где рф — коэффициент, принимаемый по табл. 24(12).

2.18. При проектировании крепления откосов сооружений из несортированной каменной наброски необходимо, чтобы значение коэффициента ε_D зернового состава находилось в границах заштрихованной зоны, приведенной на рис. 28(13).

	коэффициент µф пр			
Наименование элементов	набр о ске	укладке		
Камень	0,025			
блоки	0,021			
Тетраподы	0,008	0,0058		
Диподы	0,0057	0,0049		
Трибары	0,0057	0,0034		
Гексалеги	0.0043	0.0034		

Таблица 24(12)

Значение коэффициента ед должно определяться по формуле

$$\epsilon_D = \sqrt[3]{\frac{\overline{G}_i}{\overline{G}}} = \frac{D_{\rm uu}!}{D_{\rm uu}},\qquad 43 \,(35)$$

где G — вес камня, определяемый по требованиям п. 2.17 настоящей главы, кгс; G_i — вес камня, больший или меньший расчетного, кгс; D_{in}^{I} и D_{in} — диаметры фракций камня, см, приведенные к диаметру шара, имеющего вес соответственно G_i и G_i

Зерновой состав несортированной каменной наброски для крепления откосов, соответствующий заштрихованной зоне (рис. 28(13)), следует считать пригодным только для сооружений высотой H_{oc} (рис. 24(11)) с заложением откоса $H_{oc}m_{\alpha}$, при этом значение m_{α} должно находиться в пределах $3 \leq m_{\alpha} \leq 5$, а высота волны — 3 м и менее.

Рис. 28 (13). График для определения допустимого зернового состава несортированной каменной наброски для крепления откосов.

Использование несортированной каменной наброски («горной массы») для укрепления откосов земляных сооружений и берегов водоемов допускается при значениях коэффициента разнозернистости материала

$$\epsilon_{\rm A} = \frac{D_{60}}{D_{10}} < 35.$$

Пример 8. Определить вес камня и состав разнозернистого карьерного материала (горной массы) при тех же, что и в примере 7, исходных данных. Удельный вес материала камня $\gamma_{M} = 2,6 \text{ т/m}^3$. Камень рваный, неправильной геометрической формы, $\mu_{\Phi} = 0,025$ (см. табл. 24(12)). Расчет произведем для участка основного крепления — от глубины $z = 0,7h_{1\%} = 0,7 \cdot 3,0 = 2,1 \text{ м}$ до гребня плотины (в пределах отметок от +4,8 до -2,1 м).

Расчетный вес камня, обеспечивающий его состояние предельного равновесия, по формуле 41 (33):

$$G = \frac{0.25 \cdot 2.6 \cdot 3.0^2 \cdot 30}{\left(\frac{2.6}{1} - 1\right)^3 \sqrt{1 + 4^3}} = 0.53 \text{ rc.}$$

Вводя коэффициент запаса устойчивости 1,1, принимаем вес камня $G = 1, 1 \cdot 0, 53 = 0, 58$ тс.

Приведенный диаметр камня

$$D_{\rm III} = \sqrt[3]{\frac{G}{0,524\gamma_{\rm M}}} = \sqrt[3]{\frac{0,58}{0,524\cdot 2,6}} = 0,75 \,\,\text{м.}$$

Процентное содержание фракций в несортированной разнозернистой смеси карьерного каменного материала определяется по графику, приведенному на рис. 28(13). Результаты расчетов сведены в табл. 25.

Допустимое процентное содержание фракций грунта в несортированной каменно-гравийной смеси определено на основании нижеизложенного.

Верхняя и нижняя кривые на рис. 28 (13) являются интегральными кривыми распределения крупности грунта в смеси, которые ограничивают процентное содержанчие фракции $D_{\rm m}{}^i$ и мельче ее в общей массе несортированного грунта.

Определим, например, допустимое в нашем случае процентное содер-

жание зерен, крупность которых находится в диапазоне 25-50 см. Расчетная крупность D=75 см. Диапазон относительной крупности

$$\varepsilon_D = \frac{D_{\rm m}i}{D_{\rm m}} = \frac{25}{75} \div \frac{50}{75} = 0.33 \div 0.66,$$

На графике, приведенном на рис. 28(13), проводим вертикаль через точку $\varepsilon_D = 0.33$ до пересечения с верхней кривой и читаем отсчет на вертикальной оси — 25%.

. Проводим вертикаль через точку $\varepsilon_D = 0,66$ и читаем отсчет — 52%. Разность 52% — 25% = 27%.

Аналогичным образом определяем процентное содержание фракций с крупностью 25—50 см по нижней кривой и соответствующие им отсчеты на вертикальной оси графика — 10% и 19%. Разность 19%—10% = =9%.

3. НАГРУЗКИ ОТ ВОЛН НА ОБТЕКАЕМЫЕ ПРЕГРАДЫ И СКВОЗНЫЕ СООРУЖЕНИЯ

Нагрузки от волн на вертикальную обтекаемую преграду

3.1. Максимальную нагрузку от волн $Q_{\rm M}$, тс, на вертикальную обтекаемую преграду с поперечными размерами $a \leq 0.33\lambda$ и $b \leq 0.2\lambda$ (рис. 29(14), *a*) при $H > H_{\rm KD}$ необходимо определять по формуле

$$Q_{\rm M} = Q_{\rm HM} \delta_{\rm H} + Q_{\rm CM} \delta_{\rm C}, \qquad 44(36)$$

где Q_{им} и Q_{см} — соответственно инерционный и скоростной компоненты нагрузки от волн, тс, определяемые по формулам:

$$Q_{\mu\mu} = \frac{1}{4} \gamma \pi b^2 h k_v a_{\mu} \beta_{\mu}; \qquad \qquad 45(37)$$

$$Q_{\rm fM} = \frac{1}{12} \gamma b \hbar^2 k_{\nu}^2 a_{\rm c} \beta_{\rm c}; \qquad 46(38)$$

δ_и н δ₀ -- коэффициенты сочетания инерционного и скоростного компонентов максимальной нагрузки от волн, принимаемые соответственно по графикам 1 и 2 рис. 30(15)

Днаметр	Допустимое содер-				
фракций см	жание, %				
	от	до			
≥ 75	10	72			
50—75	38	8			
25—50	27	9			
10—25	12	5			
5—10	3	3			
меньше 5	10	3			

Таблица 25

Рис. 29 (14). Схемы к определению волновых нагрузок на обтекаемые преграды а-вертикальные; б-горизонтальные.

Рис. 30 (15). Графики значений коэффициентов сочетания инерционного ди (графики 1) и скоростного де (графики 2) компонентов нагрузки от волн.

при положении преграды относительно вершины волны $\overline{x} = \frac{x}{\overline{\lambda}}$; *а* — размер преграды по

лучу волны, м; b — размер преграды по нормали к лучу волны, м; k_{ν} — коэффициент, принимаемый по табл. 26(13); α_{u} и α_{c} — инерционный и скоростной коэффициенты глубины, принимаемые соответственно по графикам a н δ рис. 31(16).

Рис. 31 (16). Графики значений инер-

ционного ан и скоростного ас коэф-

фициентов глубины.

Таблица 26(13)

Относительный размер преграды <i>а</i> /λ	0, 0 5	0,1	0,15	0,2	0,25	0,3	0,35
Коэффициент k _v	1	0,97	0,93	0,86	0,79	0,70	0,62

β_и и β_с — инерционный и скоростной коэффициенты формы преграды с поперечным сечением в виде круга, эллипса и прямоугольника, принимаемые по графикам рис. 32(17).

Примечания: 1. Расчет сквозных сооружений или отдельно стоящих обтекаемых преград на нагрузки от волн должен производиться, как правило, с учетом шероховатости их поверхности. При наличии опытных данных по снижению влияния коррозии и морских обрастаний величины коэффициентов формы необходимо определять по формулам:

$$\beta_{\rm H} = \frac{a}{2b} C_{x{\rm H}}; \qquad 47(39)$$

$$\beta_{\mathbf{c}} = C_{x\mathbf{c}}, \qquad \qquad 48(40)$$

где C_{xu} и C_{xc} — уточненные опытные значения коэффициентов инерционного и скоростного сопротивлений.

2. При подходе воли под углом к обтекаемой преграде (в виде эллинса или прямоугольника) допускается коэффициенты формы определять интерполяцией между их значениями по главным осям.

3. Максимальную нагрузку от волн $Q_{\rm M}$, тс. на вертикальную обтекаемую преграду при значении $\frac{Q_{\rm HM}}{Q_{\rm CM}} \ge 2.0$ допускается принимать $Q_{\rm M} = Q_{\rm HM}$, а при значении $\frac{Q_{\rm HM}}{Q_{\rm CM}} \le 0.2 - Q_{\rm M} = Q_{\rm CM}$; в других случаях $Q_{\rm M}$ следует определять из ряда величин, получаемых по формуле 44(36) при различных значениях \overline{x} .

Под обтекаемыми преградами понимают преграды, относительные размеры которых (a/λ) малы, и эффект отражения при взаимодействии их с волнами не оказывает существенного влияния на величину волновых нагрузок.

Расчетную обеспеченность высот волн в системе необходимо принимать согласно п. 4 приложения 1 к данной главе СНиП, а именно: для сквозных сооружений и обтекаемых преград класса I - 1%; класса II - 5%; классов III и IV - 13%.

При определении нагрузок на сооружения необходимо принимать высоту волны заданной обеспеченности в створе сооружения и длину волны в пределах от 0,8 до 1,4 λ , соответствующую максимальному волновому воздействию. Для назначения высотных отметок сквозных со-

Рис. 32 (17). Графики значений инерционного $\beta_{\rm H}$ и скоростного $\beta_{\rm C}$ коэффициентов формы (для эллиптических преград — сплошные линии, призматических — штриховые линии) в зависимости от a/b (для Q, q и P_x) или b/a (для P_z).

оружений, возводимых на открытых акваториях, допускается расчетную обеспеченность высот волн в системе принимать 0,1% при надлежащем обосновании.

Рис. 33. Графики значений коэффициентов сочетаний в зависимости от X: 1-8u; 2-8c; 3-8xu; 4-8xc.

Рис. 34. Графики значений коэффициентов сочетаний инерционного δ_н (графики 1) и скоростного d_c (графики 2) компонентов нагрузки от волн при $H/\overline{\lambda} = 0,1.$

48

Рис. 35. Графики значений коэффициентов сочетаний инерционного ди (графики 1) и скоростного де (графики 2) компонентов нагрузки от волн при $H/\bar{\lambda} = 0,12$.

Рис. 36. Графики значений коэффициентов сочетаний инерционного ди (графики 1) и скоростного дс (графики 2) компонентов нагрузки от волн при $H/\bar{\lambda} = 0,15$.

50

Рис. 37. Графики значений коэффициентов сочетаний инерционного δ_и (графики 1) и скоростного δ_с (графики 2) компонентов нагрузки от волн при *H*/λ = 0,25.

₽ ₩

Рис. 38 (18). Графики значений коэффициентов сочетания инерционного д_{хи} (графики 1) и скоростного д_{хе} (графики 2) компонентов горизонтальной нагрузки от волн.

Размеры поперечного сечения преграды (a, b, d) следует определять с учетом возможного увеличения их в период эксплуатации за счет коррозии и обрастания морскими организмами. Инерционный и скоростной коэффициенты формы преграды $\beta_{\rm N}$ и $\beta_{\rm c}$, имеющей форму, отличную от эллипса или прямоугольника, определяют также по формулам 47 (39) и 48 (40), где $C_{\rm XM}$ и $C_{\rm xc}$ — опытные значения инерционного и скоростного коэффициентов сопротивлений, а a и b — соответствующие оси эллипса, вмписанного в поперечное сечение преграды.

Рис. 39 (19). Графики значений коэффициентов удельной нагрузки от волн θ_x , ε_x , ε_z и θ_z .

Численные значения скоростного коэффициента формы β_c , определенные по графикам, приведенным на рис. 32(17), допускается уточнять путем умножения их на поправочный коэффициент, принимаемый равным для преград:

подводных цилиндрических, покрытых морскими обрастаниями, и приэматических — 4/3;

подводных и надводных цилипдрических, периодически окрашиваемых — 2/3.

Для упрощения расчетов при определении $Q_{\rm M}$ по указаниям примечания 3 рекомендуется пользоваться графиками коэффициентов сочетаний δ , приведенными на рис. 33, в зависимости от $X = Q_{\rm MM}/Q_{\rm CM}$ или $q_{\rm MM}/q_{\rm CM}$, относительной глубины H/λ и пологости волны λ/h .

По параметру X определяются наибольшее относительное удаление преграды от вершины волны $\overline{x} = x/\lambda$ в момент максимума волновой нагрузки, — соответствующие ей коэффициенты сочетания $\delta_{\rm H}$ и $\delta_{\rm C}$ и — величина $Q_{\rm M}$. Далее, задаваясь несколькими значениями \overline{x} , меньшими, чем полученное по рис. 33, определяют по формуле 44(36) значения Q, из которых выбирают наибольшее. При этом коэффициенты сочетания δ_{n} и δ_{c} для выбранного значения \overline{x} определяют по рис. 33 или для соответствующей относительной глубины по рис. 30(15) и 34—37.

Для предварительных расчетов допускается определять величину *x* по рис. 33, не варьируя, как выше указано, несколькими значениями этой величны.

1-при $H: \overline{\lambda}=0,5$ и $\overline{\lambda}: h=40; 2-при H: \overline{\lambda}=0,5$ и $\overline{\lambda}: h=20, a$ также при $H: \overline{\lambda}=0,2$ и $\overline{\lambda}: h=40; 3-при H: \overline{\lambda}=0,5$ и $\overline{\lambda}: h=10, a$ также при $H: \overline{\lambda}=0,2$ и $\overline{\lambda}: h=20; 4-при H: \overline{\lambda}=0,2$. и $\overline{\lambda}: h=20; 4-при H: \overline{\lambda}=0,2$. и $\overline{\lambda}: h=10$.

3.2. Удельную нагрузку от волн q, тс/м, на вертикальную обтекаемую преграду на глубине z, м, при максимальной нагрузке $Q_{\rm M}$ (рис. 29(14), a) необходимо определять по формуле

$$q = q_{\rm HM}\delta_{x\rm H} + q_{\rm CM}\delta_{x\rm C}, \qquad 49(41)$$

где *q*им и *q*ем — инерционный и скоростной компоненты удельной нагрузки от волн, тс/м, определяемые по формулам:

$$q_{\rm HM} = \gamma \frac{\pi^2 b^2}{2} \frac{h}{\lambda} k_v \theta_x \beta_{\rm H}; \qquad 50(42)$$

$$q_{\rm cM} = \gamma \frac{2}{3} \pi b \frac{h^2}{\lambda} k_v^{2} \varepsilon_x \beta_{\rm c}; \qquad 51(43)$$

 δ_{xu} и δ_{xc} — коэффициенты сочетания инерционного и скоростного компонентов удельной нагрузки от воли, принимаемые соответственно по графикам 1 и 2 рис. 38(18) при значении x согласно требованиям п. 3.1 настоящей главы; θ_x и e_x — коэффициенты удельной нагрузки от воли, принимаемые по графикам a и b рис. 39(19) при значениях относительной глубины $\overline{z} = \frac{H-z}{H}$.

3.3. Превышение взволнованной поверхности η, м, над расчетным уровнем должно определяться по формуле

$$\eta = \eta h$$

где $\overline{\eta}$ — относительное превышение взволнованной поверхности, определяемое по рис. 40(20).

Рис. 41 (21). Графики значений относительных ординат z_{Q_H} —1 и $\overline{z_{Q_C}}$ —2.

Превышение средней волновой линии над расчетным уровнем ΔH , м, следует определять по формуле

$$\Delta H = (\overline{\eta}_{\rm B} - 0.5) h, \qquad 53(45)$$

где $\overline{\eta}_{B}$ — относительное превышение вершины волны, определяемое по рис. 40(20) при вначении $\overline{x}=0$.

3.4. Нагрузки от волн Q и q на вертикальную обтекаемую преграду при любом ее расположении x, м, относительно вершины волны следует определять соответственно по формулам 44(36) и 49(41), при этом коэффициенты δ_{u} и δ_{c} должны приниматься по графикам 1 и 2 рис. 30(15), а δ_{xu} и δ_{xc} — по графикам 1 и 2 рис. 38(18) для данного значения относительной величины

$$\overline{x} = \frac{x}{\overline{\lambda}}.$$

3.5. Расстояние z_{QM} , м, от расчетного уровня воды до точки приложения максимальной нагрузки Q_M на вертикальную обтекаемую преграду необходимо определять по формуле

52(44)

$$\boldsymbol{z}_{\boldsymbol{Q}_{\mathrm{M}}} = \frac{1}{Q_{\mathrm{M}}} \left(Q_{\mathrm{HM}} \delta_{\mathrm{H}} \boldsymbol{z}_{\boldsymbol{Q}_{\mathrm{H}}} + Q_{\mathrm{cM}} \delta_{\mathrm{c}} \boldsymbol{z}_{\boldsymbol{Q}_{\mathrm{c}}} \right), \qquad 54(46)$$

е $\delta_{\rm ff}$ и $\delta_{\rm c}$ — коэффициенты, принимаемые по графикам 1 и 2 рис. 30(15) при \overline{x} , соответствующем максимальному значению $Q_{\rm M}$; $z_{Q\rm H}$ и $z_{Q\rm c}$ — ординаты точек приложения соответственно инерционного и скорогде

стного компонентов сил, м, определяемые по формулам:

$$z_{QH} = \mu_{H} \overline{z}_{QH} \overline{k}; \qquad 55(47)$$

$$z_{Qc} = \mu_c \overline{z}_{Qc} \overline{\lambda}; \qquad 56(48)$$

 \overline{z}_{Qu} и \overline{z}_{Qc} — относительные ординаты точек приложения инерционного и скоростного компонентов сил, принимаемые по графикам рис. 41(21) (\overline{z}_{Qu} -

по графику 1, z_{Qc} – по графикам 2); µ_н и µ_c – инерционный и скоростной коэффициенты фазы, принимаемые по графикам рис. 42(22).

Рис. 43. Графики значений коэффициента η при Η : λ=0,1--0,5. (Каждой относительной глубине Η : λ соответствует своя горизонтальная шкала x).

Расстояние z_Q от расчетного уровня до точки приложения нагрузки от волн Q при любом удалении x преграды от вершины волны следует определять по формуле 54 (46), при этом коэффициенты δ_{π} и δ_{c} должны приниматься согласно графикам 1 и 2 рис. 30(15) для данного эначения относительной величины

$$\overline{x} = \frac{x}{\overline{\lambda}}$$
.

К пп. 3.2 и 3.3. Для построения эпюры удельной волновой нагрузки по высоте преграды, соответствующей $Q_{\rm N}$, необходимо определить значение \overline{x} для этого момента времени, руководствуясь указаниями примечания 3 к п. 3.1. Далее для этого значения \overline{x} — определить по указаниями п. 3.2 значения $\delta_{\rm xu}$ и $\delta_{\rm xc}$ и по п. 3.3 превышение взволнованной поверхности η , используя при этом графики, приведенные на рис. 43, по которым значение $\overline{\eta}$ можно определить в более широком диапазоне исходных параметров, чем по графику, приведенному па рис. 40(20). Затем по п. 3.2 — определить значения q при z = H, η и нескольких промежуточных значениях z и построить эпюру согласно рис. 29(14), a.

При необходимости определить максимальйое значения удельной нагрузки от волн $q_{\rm M}$ на заданном заглублении z_1 , следует определить q по формуле 49(41) для ряда последовательных значений \bar{x} и выбрать максимальное. Наибольшее значение \bar{x} определяется по рис. 33 по параметру $X = q_{\rm HM}/q_{\rm CM}$, а соответствующие значения коэффициентов сочетания $\delta_{\rm xu}$ н $\delta_{\rm xc}$ по рис. 33 или 38(18) и 44—47. В общем случае для каждого значения z существует свое значение \bar{x} , соответствующее $q_{\rm M}$.

На рис. 48 и 49 приведены графики для определения значений θ_x и ε_x в более широком днапазоне исходных параметров, чем по графикам, приведенным на рис. 39(19).

Нагрузку от волн на преграды неполной высоты (рис. 50) надлежит определять по эпюре удельной нагрузки от волн, построенной в пределах смоченной высоты преграды: на преграды, не доходящие до дна от η до $z_{\rm H}$ — ординаты нижнего среза преграды (рис. 50, *a*), на затопленные преграды от $z_{\rm B}$ — ординаты верхнего среза преграды — до H — ординаты дна (рис. 50, δ), на затопленную преграду, не доходящую до дна, — от $z_{\rm B}$ до $z_{\rm H}$ (рис. 50, *b*).

Ординаты точки приложения нагрузки от воли Q определяют по центру площади эпюры q, $Q_{\rm M}$ принимают из ряда величин Q, полученных при различных значениях \overline{x} .

При построении эпюры удельной волновой нагрузки допускается принимать равной нулю скоростную составляющую волнового давления на глубине, равной $0,3\overline{\lambda}$, и инерционную — на глубине, равной $0,5\overline{\lambda}$.

К п. 3.5. Следует заметить, что z_{Qu} и z_{Qc} — относительные ординаты точек приложения инерционного и скоростного компонентов сил определены для x, соответствующего максимальному значению этих компонентов. Изменение величины ординат точек приложения компонентов сил при любом значении x (положительном или отрицательном) учитывается коэффициентами фазы $\mu_{\rm H}$ и $\mu_{\rm c}$. Эти коэффициенты могут быть определены по графикам, приведенным на рис. 51 и 52, в болсе широком днапазоне изменения исходных параметров, чем по графикам, приведенным на рис. 42 (22).

Пример 9. Дано; H=30 м; $h_{r,r}=5,7$ м; $\tau=10,6$ с. Расчетная скорость ветра W=28 м/с; изобаты перпендикулярны главному лучу; $m_{\alpha}=50$. Требуется определить максимальную нагрузку от волн $Q_{\rm M}$ и расстояние $z_{\rm QM}$ от расчетного уровня воды до точки приложения максимальной нагрузки на колонну d=4 м сооружения I класса.

Рис. 44. Графики значений коэффициентов сочетания инерционного д_{хи} (графики 1) и скоростного д_{хс} (графики 2) компонентов удельной горизонтальной нагрузки от волн при $H_{IA} = 0,1.$

Рис. 45. Графики значений коэффициентов сочетания инерционного δ_{xu} (графики 1) и скоростного δ_{xc} (графики 2) компонентов удельной горизонтальной нагрузки от волн при *H*/λ = 0,12.

Рис. 46. Графики значений коэффициентов сочетания инерционного д_{хи} (графики 1) и скоростного д_{хс} (графики 2) компонентов удельной горизонтальной нагрузки от воли при $H_{i}\overline{\Lambda} = 0,15$.

Рис. 47. Графики значений коэффициентов сочетания инерционного δ_{xн} (графики 1) и скоростного δ_{xc} (графики 2) компонентов удельной горизонтальной нагрузки от волн при $H/\overline{\lambda} = 0,25$.

Рис. 48. Графики значений коэффициентов удельной нагрузки от воли в_x.

Решение.

1. По формуле 187(151) определяем среднюю длину волн в глубоководной зоне

 $\overline{\lambda_{ra}} = \frac{9,81 \cdot 10,6^2}{2 \cdot 3,14} = 175 \text{ M}_{\bullet}$

Рис. 51. Графики значений инерционного ни и скоростного не коэффициентов фазы при $H/\overline{\lambda} = 0,1$ и 0,2.

2. Расчетная обеспеченность высот волн в системе определяется по табл. 89(35) 1%. Определяем элементы волн у сооружения: высоту волны 1%-ной обеспеченности вычисляем по формуле

191(153); при $\frac{H}{\bar{\lambda}_{rg}} = \frac{30}{175} = 0,171$ по графику 1, приведенному на рис. 125(42), 63

определяем $k_{\rm r} = 0.915$; по условню задачи $k_{\rm p} = 1.0$; при $\frac{H}{\overline{\lambda_{\rm rn}}} = 0.171$ и 1: $m_{\alpha} = 0.02$ по табл. 105(39) определяем $k_{\rm n} = 0.9$; при $\frac{gH}{W^2} = \frac{9.81 \cdot 30}{28^2} = 0.376$ по графику, приведенному на рис. 117(39), определяем $k_{1\%} = 2.28$, тогда $h_{1\%} = 0.915 \cdot 1.0 \cdot 0.9 \cdot 2.28 \cdot 5.7 = 10.7$ м;

Рис. 52. Графики значений инерционного μ_и и скоростного μ_с коэффициентов фазы при *H*/λ = 0,15 и 0,25.

при
$$\frac{H}{\overline{\lambda}_{r,n}} = 0,171$$
 и $\frac{h_{1_{\infty}}}{g^{-2}} = \frac{10,7}{9,81\cdot10,6^2} = 0,01$ по рис. 123(41) определяем $\frac{\overline{\lambda}}{\overline{\lambda}_{r,n}} = 0.85$, откуда $\overline{\lambda} = 0.85 \cdot \overline{\lambda}_{r,n} = 0.85 \cdot 175 = 149$ м.

3. Максимальную нагрузку от волн Q_и определяем по п. 3.1.

При $\frac{a}{\lambda} = \frac{d}{\lambda} = \frac{4}{140} = 0,027$ по табл. 26(13) определяем $k_v = 1,0.$ При $\frac{H}{\overline{\lambda}} = \frac{30}{149} = 0.2$ и $\frac{\overline{\lambda}}{h} = \frac{149}{10.7} = 13.9$ по графикам *а* и *б*, приведенным на рис. 31(16), определяем соответственно $\alpha_{ss} = 0.88$ и $\alpha_c = 1.77$. По графикам, приведенным на рис. 32(17), для круглоцилиндриче-ской преграды определяем $\beta_u = \beta_c = 1.0$. Далее по формуле 45(37) определяем

$$Q_{\rm HM} = \frac{1}{4} \cdot 1.0 \cdot 3.14 \cdot 4.0^2 \cdot 10.7 \cdot 1.0 \cdot 0.88 \cdot 1.0 = 118.6 \text{ TC},$$

и по формуле 46(38)

$$Q_{\rm cM} = \frac{1}{12} \cdot 1.0 \cdot 4 \cdot 10.7^2 \cdot 1.0^2 \cdot 1.77 \cdot 1.0 = 67.3 \text{ rc.}$$

При $X = \frac{Q_{\text{HM}}}{Q_{\text{exc}}} = \frac{118,6}{67.3} = 1,76$ по рис. 33 находим максимальное значение $\bar{x} = 0,172$ и значения коэффициентов δ_{μ} и δ_{c} при $\frac{H}{\nabla} = 0,2, \frac{\bar{\lambda}}{L} =$ = 13,9 (по интерполяции).

Далее по формуле 44(36) вычисляем Q_{μ} для $\bar{x} = 0,172$ и для ряда меньших значений х. Результаты вычислений сводим в табл. 27 и выбираем из них наибольшее значение: $Q_{\mu} = 137,3$ при $\overline{x} = 0,14$.

Таблица 27

x	^б и	Q _{им} ^δ н, тс	c	Q _{см} ⁶ с, тс	Q _м , тс
0,172	1,02	121,0	0,13	8,8	129,8
0,14	1,015	120,5	0,25	16,8	137,3
0,13	0,98	116,3	0,29	19,5	135,8

4. Расстояние z_{QM} от расчетного уровня воды до точки приложения максимальной нагрузки определяем по п. 3.5. При $\frac{H}{\overline{\lambda}} = 0,2$ и $\frac{\overline{\lambda}}{h} = 13,9$ по графикам 1 и 2, приведенным на

рис. 41(21), определяем соответственно $\vec{z}_{QH} = 0,08$ и $\vec{z}_{QC} = 0,035$. При $\vec{x} = 0,14, \ \frac{\lambda}{h} = 13,9$ и $\frac{H}{\lambda} = 0,2$ по графикам, приведенным на рис. 42(22), определяем $\mu_{\rm H} = 0.85$ и $\mu_{\rm c} = 1.7$.

По формуле 55(47)

 $z_{Q_{\rm H}} = 0,85 \cdot 0,08 \cdot 149 = 10,1$ м.

По формуле 56(48)

 $z_{Qc} = 1,7 \cdot 0,035 \cdot 149 = 8,85$ м.

По формуле 54 (46)

 $z_{OM} = \frac{1}{137.3} (118,6 \cdot 1,01 \cdot 10,1 + 67,3 \cdot 0,25 \cdot 8,85) = 9,87$ M.

Пример 10. Дано: H = 15 м, $h_{5\%} = 6,5$ м, $\overline{\lambda} = 65$ м. Требуется определить $Q_{\rm M}$, $z_{\rm OM}$ и \overline{x} на сваю эстакады (сооружение II класса) квадратного сечения a=0,6 м, а также волновую нагрузку на второй ряд свай, удаленный от первого на расстояние 7 м, в тот же момент времени.

Решение.

1. Максимальную нагрузку $Q_{\rm M}$ определяем по п. 3.1. При $\frac{a}{\overline{\lambda}} = \frac{0.6}{65} = 0.0924$ по табл. 26(13) определяем $k_v = 1.0$. При $\frac{H}{\overline{\lambda}} = \frac{15}{65} = 0.23$ и $\frac{\overline{\lambda}}{h} = \frac{65}{6.5} = 10$ по графикам a и b, приведен-

ным на рис. 31(16), определяем соответственно $\alpha_{\rm H} = 0,88$ и $\alpha_{\rm c} = 1,9$. При $\frac{a}{h} = \frac{a}{a} = 1$ по графикам, приведенным на рис. 32(17), опре-

При $\frac{1}{b} = \frac{1}{a} = 1$ по графикам, приведенным на рис. 52(17), опр деляем $\beta_{\rm H} = 1,62$ и $\beta_{\rm c} = 1,2$.

Согласно пояснению к п. 3.1 для призматической преграды уточняем численное значение коэффициента формы умножением значения β_c , полученного по рис. 32(17), на поправочный коэффициент 4/3, тогда $\beta_c = 1, 2 \cdot \frac{4}{3} = 1, 6.$

По формуле 45(37)

$$Q_{\text{HM}} = \frac{1}{4} \cdot 1,0 \cdot 3,14 \cdot 0,6^2 \cdot 6,5 \cdot 1,0 \cdot 0,87 \cdot 1,62 = 2,6 \text{ tc.}$$

По формуле 46(38)

 $Q_{\rm CM} = \frac{1}{12} \cdot 1,0 \cdot 0,6 \cdot 6,5^2 \cdot 1,0^2 \cdot 1,9 \cdot 1,6 = 6,4 \text{ tc.}$

При $X = \frac{2,60}{6,4} = 0,41$ по рис. 33 находим максимальное значение $\overline{x} = 0,033$ и значения коэффициентов δ_{μ} и δ_{c} , при $\frac{H}{\overline{\lambda}} = 0,23$, $\frac{\overline{\lambda}}{h} = 10$. Далее по формуле 44(36) вычисляем Q для $\overline{x} = 0,033$ и для ряда меньших значений \overline{x} . Результаты приведены в табл. 28; из них на-ходим наибольшее значение $Q_{\mu} = 6,87$ тс при $\overline{x} = 0,03$.

Таблица 28

x	^б и	Q _{им} б _{и,} тс	δ _c	Q _{см} δ _с , тс	Q _M , ic
0,033	0,38	1,00	0,91	5,84.	6,84
0,03	0,35	0,92	0,93	5,95	6,87
0,025	0,29	0,76	0,95	6,08	6,84
0,02	0,23	0,60	0,96	6,15	6,75

2. гом определяем по п. 3.5.

При $\frac{H}{\overline{\lambda}} = 0.23$ и $\frac{\overline{\lambda}}{h} = 10$ по рис. 41(21) определяем $\overline{z}_{QH} = 0.09$ и $\overline{z}_{QC} = 0.021;$

при $\overline{x} = 0,03$, $\frac{H}{\overline{\lambda}} = 0,23$ н $\frac{\overline{\lambda}}{h} = 10$ по рис. 42(22) находим $\mu_{\mu} = 0,49$ и $\mu_{c} = 1,10$.

По формуле 55(47)

$$z_{Ou} = 0.49 \cdot 0.09 \cdot 65 = 2.87$$
 M.

По формуле 13(48)

$$z_{Oc} = 1,10.0,021.65 = 1,50$$
 м.

По формуле 54 (46) находим

$$z_{QM} = \frac{1}{6.87} (2.6 \cdot 0.35 \cdot 2.87 + 6.4 \cdot 0.93 \cdot 1.50) = 1.69 \text{ M}.$$

3. Для второго ряда свай, удаленных от вершины волны на относительное расстояние $\overline{x}_2 = \overline{x} + \frac{7}{\overline{x}} = 0.03 + \frac{7}{65} = 0.138$, определяем Q и го.

По рис. 30(15) при $\overline{x}_2 = 0,138, \frac{H}{2} = 0,23$ и $\frac{\overline{\lambda}}{h} = 10$ находим $\delta_{\mu} = 1,05$ и $\delta_c = 0.21$.

Далее по формуле 44 (36) вычисляем $Q = 2,60 \cdot 1,05 + 6,4 \cdot 0,21 = 4,10$ тс, по формуле 54 (46) находим

$$z_Q = \frac{1}{4,10} (2,6 \cdot 1,05 \cdot 4,35 + 6,4 \cdot 0,21 \cdot 3,37) = 4,0$$
 м.

Пример 11. Для естественных условий примера 9 требуется определить $Q_{\rm M}$ и $z_{\rm QM}$ на колонну ПБУ d=3 м, подвергаемую периодической очистке от обрастания и коррозии. Опытные значения $C_{xc} = \frac{2}{3}$ и $C_{xn} = 2$.

Сооружение І класса.

Решение.

1. Максимальную нагрузку от волн $Q_{\rm M}$ определяем по п. 3.1. При $\frac{a}{\overline{\lambda}} = \frac{d}{\overline{\lambda}} = \frac{3}{149} = 0,02$ по табл. 26(13) определяем $k_v = 1,0$. Коэффициенты $\alpha_{u} = 0.88$ и $\alpha_{c} = 1.77$ (см. пример 9). Коэффициенты β_{u} и β_{c} согласно примечанию 1 п. 3.1 определяются соответственно по формулам 47(39) и 48(40):

$$\beta_{\rm H} = \frac{3}{2 \cdot 3} \cdot 2 = 1,0, \qquad \beta_{\rm c} = \frac{2}{3} = 0,67.$$

По формуле 45(37)

 $Q_{\text{HM}} = \frac{1}{4} \cdot 1,0 \cdot 3,14 \cdot 3^2 \cdot 10,7 \cdot 1,0 \cdot 0,88 \cdot 1,0 = 66,5 \text{ tc.}$

По формуле 46(38)

 $Q_{\rm CM} = \frac{1}{12} \cdot 1,0 \cdot 3 \cdot 10,7^2 \cdot 1,0^2 \cdot 1,77 \cdot 0,67 = 33,9$ rc.

При $X = \frac{66,5}{33.9} = 1,96$ находим по рис. 33 максимальное значение $\vec{x} = 0,22$, и по рис. 30(15) — значения $\delta_{\mu} = 0,95$ и $\delta_{c} = 0,01$ при $\frac{H}{\overline{\lambda}} = 0,2$ и $\frac{\overline{\lambda}}{h} = 13,9$. Далее по формуле 44(36) вычисляем Q для $\bar{x} = 0,22$ и при меньших его значениях. Результаты вычислений сводим в табл. 29 и выбираем наибольшее значение Q_и = 75,7 тс при $\bar{x} = 0.14.$

Таблица	29
---------	----

x	⁸ н	Q _{им} ^δ и, тс	δ _c	Q _{см} å _с , тс	Q _м , тс
0,22	0,95	63,2	0,01	0,34	63,5
0,20	0,98	65,1	0,05	1,70	66,8
0,16	1,02	67,8	0,16	5,4	73,2
0,15	1,02	67,8	0,2	6,8	74,6
0,14	1,015	67,5	0,24	8,2	75,7
0,13	0,98	65,1	0,28	9,5	74,6

2. Расстояние zom определяем по п. 3.5.

$$\overline{z}_{QH} = 0.08; \ \overline{z}_{Qc} = 0.035$$
 (п. 4 примера 9)

При $\overline{x} = 0,14; \ \frac{\overline{\lambda}}{h} = 13,9$ и $\frac{H}{\overline{\lambda}} = 0,2$ по графикам рис. 42(22) определяем

 $\mu_{\rm H} = 0.85$ и $\mu_{\rm C} = 1.7$.

По формуле 55(47)

$$z_{OH} = 0.85 \cdot 0.08 \cdot 149 = 10.1 \text{ M}.$$

По формуле 56(48)

$$z_{Oc} = 1,7 \cdot 0,035 \cdot 149 = 8,85$$
 M.

По формуле 54 (46)

$$z_{Q_{\rm M}} = \frac{1}{75,7} (66,5 \cdot 1,015 \cdot 10,1 + 33,9 \cdot 0,24 \cdot 8,85) = 9,98$$
 M.

Пример 12. Для условий примера 9 при z=0 определить $q_{\rm M}$ и \overline{x} , а также q в момент времени, соответствующий $Q_{\rm M}$. Построить эпюру q для того же момента времени.

Решение.

1. Удельную нагрузку q_м определяем по п. 3.2.

$$z = 0; \quad \overline{z} = \frac{30 - 0}{30} = 1.$$

При $\frac{H}{\overline{\lambda}} = 0,2; \frac{\overline{\lambda}}{h} = 13,9$ и $\overline{z} = 1$ по графикам *а* и *б*, рис. 39(19), определяем $\theta_x = 1,02$ и $e_x = 0,47$. Значения коэффициентов k_v , β_{μ} и β_c определены в примере 9.

По формуле 50(42)

$$q_{\rm HM} = 1.0 \frac{3.14^{2} \cdot 4^{2}}{2} \cdot \frac{10.7}{149} \cdot 1.0 \cdot 1.02 \cdot 1.0 = 5.76 \text{ tc/m}.$$

По формуле 51(43)

$$q_{\rm CM} = 1.0 \cdot \frac{2}{3} \cdot 3.14 \cdot 4 \cdot \frac{10.7^2}{149} \cdot 1.0 \cdot 0.47 \cdot 1.0 = 3.03 \text{ tc/m}.$$

При $X = \frac{5.76}{3.03} = 1,9$ находим по рис. 33 $\overline{x} = 0,2$, $\delta_{xu} = 0,99$ и $\delta_{xc} = 0,02$ при $\frac{H}{\overline{\lambda}} = 0,2$ и $\frac{\overline{\lambda}}{h} = 13,9$.

Далее по формуле 49(41) вычисляем q для $\overline{x} = 0,2$ и ряда меньших значений \overline{x} . Результаты вычислений сводим в табл. 30 и выбираем из них наибольшее значение $q_{\rm M} = 6,26$ тс/м при $\overline{x} = 0,15$.

Таблица	30
---------	----

x	б _{хн}	^q им ^δ хи, тс/м	^ð xc	q _{см^δxс, тс/м}	<i>q</i> , тс/м
0,2	0,99	5,7	0,02	0,06	5,76
0,18	0,99	5,7	0,09	0,27	5,97
0,16	0,96	5,53	0,20	0,61	6,14
0,15	0,95	5,47	0,26	0,79	6,26
0,14	0,91	5,24	0,31	0,94	6,18

2. Значение q при z=0 в момент времени, соответствующий $Q_{\rm M}$, определяем по формуле 49(41). Согласно примеру 9 $Q_{\rm M}$ соответствует значение $\overline{x}=0,14$. Согласно табл. 30 при $\overline{x}=0,14$ q=6,18 тс/м.

3. Для построения эпюры q при $\overline{x}=0,14$ определим значения $q_{\rm им}$ и $q_{\rm cm}$ по формулам 50(42) и 51(43) при $z=\eta$; $\overline{z}=1$; 0,8; 0,6; 0,4 и 0, $\delta_{\rm xH}=$

=0,91 и δ_{xc} =0,31 (согласно табл. 30). Результаты расчетов сведем в табл. 31. По рис. 43 при $\frac{H}{\bar{\lambda}}$ =0,2 и $\frac{\bar{\lambda}}{h}$ =13,8 определим $\bar{\eta}$ =--0,28, и по формуле 52(44) h=--0,28 · 10,8 = --3,02 м.

Ī	<i>Z</i> , м	⁰ x	q _{им} , тс/м	q _{им} ^б хи, тс/м	°x	q _{см} , тс/м	^q см ⁸ см, тс/м	<i>q</i> , тс/м
1,1	$ \begin{array}{r} -3,02 \\ 0 \\ 6 \\ 12 \\ 18 \\ 30 \end{array} $	1,17	6,60	6,0	0,6	3,87	1,20	7,20
1		1,02	5,76	5,24	0,47	3,03	0,94	6,18
0,8		0,81	4,59	4,17	0,30	1,92	0,60	4,77
0,6		0,68	3,83	3,49	0,20	1,29	0,40	3,89
0,4		0,58	3,28	2,99	0,13	0,84	0,26	3,25
0		0,51	2,88	2,62	0,11	0,71	0,22	2,84

Эпюра-*q* представлена на рис. 53.

Рассчитанная по площади эпюры волновая нагрузка $Q_{\rm M} = 137,0$ тс. Увеличение значения $Q_{\rm M}$ против определенной по формуле 44(36) составило 2,4% за счет погрешности при подсчете площади по трапециям.

Пример 13. Дано: H=30 м, $h_{1\%} = 10.8$ м, $\overline{\lambda} = 149$ м. Определить $Q_{\rm M}$ и z_{QM} на затопленную покрытую морскими обрастаниями колонну диаметром 5 м с верхним срезом $z_{\rm B} = 0.1H$; $C_{\rm xc} = \frac{4}{3}$.

Решение.

1. Построим эпюру q для нескольких значений x=0,1; 0,12; 0,14 и 0,16. Для этих значений x по графикам на рис. 38 (18) находим значения $\delta_{xx}=0,74$; 0,83; 0,92; 0,96 и $\delta_{xc}=0,59$; 0,45; 0,31; 0,19.

По формуле 48 (40) $\beta_c = C_{xc} = \frac{4}{3}$. Определяем *q* по формуле 49 (41). Результаты вычислений сводим в табл. 32.

Эпюры q приведены на рис. 54.

Наибольшее значение Q получено при $\bar{x} = 0,14$: $Q_{\rm M} = 157,65$ тс, причем $z_Q = 14,95$ м.

Рис. 53. Эпюра q к примеру 12.

Таблица 32

						<i>q</i> , tc/M			
г , м	z	θ _x	$\theta_x = e_x = \frac{q_{\text{HM}}}{\text{TC/M}}, \frac{q_{\text{CM}}}{\text{TC/M}}$			nj	при х		
						0,1	0,12	0,14	0,16
3 6 12 18 24 30	0,9 0,8 0,6 0,4 0,2 0,0	0,9 0,8 0,67 0,58 0,51 0,5	0,37 0,30 0,21 0,15. 0,13 0,12	8,06 7,16 6,00 5,20 4,56 4,48	4,10 3,28 2,30 1,64 1,39 1,31	8,38 7,24 5,80 4,62 4,20 4,09	8,54 7,43 6,02 5,06 4,41 4,31	8,68 7,60 6,23 5,29 4,62 4,53	8,52 7,49 6,20 5,30 4,64 4,55
					Q , тс	146,53	152,41	157,65	156,73
					г _Q , м	14,8	14,9	14,95	14,99

Рис. 54. Эпюры q к примеру 13.

Нагрузки от волн на горизонтальную обтекаемую преграду

3.6. Максимальное значение равнодействующей нагрузки от волн *P*, тс/м, на единицу длины горизонтальной обтекаемой преграды, рис. 29 (14), б, с поперечными размерами $a \leq 0, 1\overline{\lambda}$, м, и $b \leq 0, 1\overline{\lambda}$, м, должно определяться по формуле

$$P = \sqrt{P_{x^2} + P_{z^2}}$$
 57(49)

для двух случаев:

с максимальной горизонтальной составляющей нагрузки P_{xM} , тс/м, при соответствующем значении вертикальной составляющей нагрузки P_z , тс/м;

с максимальной вертикальной составляющей нагрузки P_{zm} , тс/м, при соответствующем значении горизонтальной составляющей нагрузки P_x , тс/м.

Рис. 55 (23). Графики значений коэффициентов сочетания инерционного д_{ги} (графики 1) и скоростного д_{гс} (графики 2) компонентов удельной вертикальной нагрузки от волн.

21

Рис. 56. Графики значений коэффициентов сочетания инерционного δ_{zn} (графики 1) и скоростного δ_{zc} (графики 2) компонентов удельной вертикальной нагрузки от волн при $H/\overline{\lambda} = 0,1.$

Рис. 57. Графики значений коэффициентов сочетания инерционного δ_{2н} (графики 1) и скоростного δ_{2c} (графики 2) компонентов удельной вертикальной нагрузки от волн при H/k = 0,12.

Расстояния x, м, от центра преграды до вершины волны при действии максимальных нагрузок P_{xM} и P_{zM} должны определяться по относительной величине $\overline{x} = \frac{x}{\overline{x}}$, принимаемой согласно рис. 38(18) и рис. 55(23).

3.7. Максимальную величину горизонтальной составляющей нагрузки от волн P_{xM} на горизонтальную обтекаемую преграду необходимо определять по формуле

$$\mathbf{P}_{\mathbf{X}\mathbf{M}} = P_{\mathbf{X}\mathbf{H}}\delta_{\mathbf{X}\mathbf{H}} + P_{\mathbf{X}\mathbf{C}}\delta_{\mathbf{X}\mathbf{C}}, \qquad 58 (50)$$

где P_{xx} и P_{xc} — инерционный и скоростной компоненты горизонтальной составляющей нагрузки от волн, тс/м, определяемые по формулам:

$$P_{XH} = \frac{1}{2} \gamma \pi^2 b^2 \frac{h}{\overline{\lambda}} k_v \theta_X \beta_H; \qquad 59 (51)$$

- δ_{xн} и δ_{xc} коэффициенты сочетания инерционного и скоростного компонентов нагрузки от волн, принимаемые соответственно по графикам 1 и 2 рис. 38(18) при значении x согласно требованиям п. 3.1 настоящей главы;
 - θ_x и ε_x обозначения те же, что и в п. 3.2 настоящей главы;
 β_и и β_c инерционный и скоростной коэффициенты формы преграды с поперечным сечением в виде круга, эллипса и прямоугольника, принимаемые по графикам рис. 32(17) при значениях а/b для горизонтальной и b/a вертикальной составляющих нагрузки.

К п.п. 3.6 и 3.7. Для горизонтальных круглоцилиндрических преград, подверженных интенсивному обрастанию, рекомендуется принимать значение $C_{xc} = 4/3$, а для преград эллиптической или прямоугольной формы— $C_{xc} = \frac{4}{3} \beta_c$, где β_c определяется по рис. 32(17).

При определении P_{xM} по формуле 58(50) рекомендуется максимальное значение x принимать по рис. 33 при $X = \frac{P_{xH}}{P_{xc}}$, а δ_{xH} и δ_{xc} —по графикам 3 и 4, приведенным на рис. 33, для принятого x и ряда меньших значений его. Из ряда полученных значений P_x выбирается максимальное.

Здесь и далее для определения коэффициентов δ_{xu} и δ_{xc} , а также δ_{zu} и δ_{zc} , в более широком диапазоне изменения исходных параметров, чем в графиках, приведенных на рис. 38(18) и 55(23), рекомендуется пользоваться графиками, приведенными соответственно на рис. 44—47 и 56—59.

3.8. Максимальную величину вертикальной составляющей нагрузки от волн P_{zм} на горизонтальную обтекаемую преграду необходимо определять по формуле

$$P_{\mathbf{z}\mathbf{M}} = -P_{\mathbf{z}\mathbf{W}}\delta_{\mathbf{z}\mathbf{W}} - P_{\mathbf{z}\mathbf{c}}\delta_{\mathbf{z}\mathbf{c}}, \qquad 61 (53)$$

где P_{zu} и P_{zc} — инерционный и скоростной компоненты вертикальной составляющей нагрузки от волн, тс/м, определяемые по формулам:

$$P_{zu} = \frac{1}{2} \gamma \pi^2 a^2 \frac{h}{\overline{\lambda}} k_v \theta_z \beta_u; \qquad \qquad 62 (54)$$

- δ₂₁₁ и δ₂₀ инерционный и скоростной коэффициенты сочетания, принимаемые по графикам 1 и 2 рис. 55(23) при значении x согласно требованиям п. 3.1 настоящей главы;
 - ε_z и θ_z коэффициенты удельной нагрузки от волн, принимаемые соответственно по графикам *в* и *г* рис. 39(19) при значениях относительной ординаты $\overline{z}_{\mu} = \frac{H z_{\mu}}{H}$;

3_и и 3_с – обозначения те же, что и в п. 3.7 настоящей главы.

Рис. 58. Графики значений коэффициентов сочетания инерционного д_{ги} (графики 1) и скоростного д_{гс} (графики 2) компонентов удельной вертикальной нагрузки от волн при $H_{l}^{\lambda} = 0,15$.

Рис. 59. Графики значений коэффициентов сочетания инерционного б_{ги} (графики 1) и скоростного б_{гс} (графики 2) компонентов удельной вертикальной нагрузки от волн при $H/\overline{\lambda} = 0.25$.

3.9. Величины горизоптальной P_x или вертикальной P_z составляющих нагрузки от волн на единицу длины горизоптальной обтекаемой преграды при любом ее расположении x относительно вершины волны следует определять соответственно по формуле 58(50) или 61(53), при этом

коэффициенты сочетания δ_{xu} , δ_{xc} или δ_{zu} , δ_{zc} должны приниматься по графикам рис. 38 (18) и 55 (23) для заданного значения $\overline{x} = \frac{x}{\overline{z}}$.

К пп. 3.8 и 3.9. Для определения коэффициентов θ_z и ε_z в более широком диапазоне изменения исходных параметров, чем в графиках, приведенных на рис. 39(19), рекомендуется пользоваться графиками, приведенными на рис. 60—61.

3.10. Максимальное значение равнодействующей нагрузки от волн P, тс/м, на единицу длины лежащей на дне цилиндрической преграды, рис. 29 (14),6, диаметр которой $d \le \le 0.1\lambda$, м, и $d \le 0.1H$, м, должно определяться по формуле 57(49) для двух случаев:

с максимальной горизонтальной составляющей нагрузки *P*_{хм}, тс/м, при соответствующем значении вертикальной составляющей нагрузки *P*_z, тс/м;

с максимальной вертикальной составляющей нагрузки Р.... тс/м при соответствующем

Рис. 60. Графики значений коэффициентов удельной нагрузки в_z.

Р_{гм.} тс/м, при соответствующем значении горизонтальной составляющей Р_x, тс/м.

3.11. Максимальную горизонтальную P_{xm} и соответствующую вертикальную P_z проекции нагрузок от волн, действующие на единицу длины лежащей на дне цилиндрической преграды, необходимо определять по формулам:

$$P_{x\mathbf{H}} = P_{x\mathbf{H}}\delta_{x\mathbf{H}} + P_{x\mathbf{c}}\delta_{x\mathbf{c}}, \qquad 64(56)$$

$$P_z = -\frac{9}{5} P_{xc} \delta_{xc}, \qquad \qquad 65(57)$$

где P_{xu} и P_{xc} — соответственно инерционный и скоростной компоненты горизонтальной составляющей нагрузки от воли, тс/м, определяемые по формулам:

$$P_{xc} = \gamma \pi d \, \frac{\hbar^2}{\lambda} \, \varepsilon_x; \qquad \qquad 67(69)$$

δ_{x н} н δ_{x c}, θ_x и ε_x — обозначения те же, что в п. 3.7 настоящей главы.

Максимальную вертикальную P_{zm} и соответствующую горизонтальную P_x проекций нагрузки от волн необходимо принимать равными

$$P_{zM} = -\frac{9}{5} P_{xc} \tag{68}$$

При расчете нагрузок от волн на лежащий на дне трубопровод в соответствии с требованиями, изложенными в пп. 3.10 и 3.11, надлежит также учитывать изложенные здесь рекомендации.

Рис. 61. Графики значений коэффициентов удельной нагрузки ϵ_z (стрелки указывают шкалы ϵ_z для соответствующих значений $H/\overline{\lambda}$).

1. При расчете волновых воздействий на подводные трубопроводы надлежит выделять следующие участки трассы:

глубоководный $(H:\overline{\lambda} > 0,5);$ мелководный $(H_{\kappa p} < H \leq 0,5\overline{\lambda});$ прибрежный $(H < H_{\kappa p}).$

Трубопроводы, укладываемые на глубоководных участках трассы, на волновые воздействия не рассчитываются.

Расчетные значения горизонтальной (боковой) P_{xp} и вертикальной (подъемной) P_{zp} составляющих удельной нагрузки от волн и течений на свободно лежащий на дне трубопровод (рис. 29(14), б) при $H_{xp} < H < 0.5\lambda$ следует определять по формулам:

$$P_{xp} = P_x k_{cH} \cos^2 \varphi_{g} + P_{xT} \cos^2 \varphi_{T}; \qquad 70$$

$$P_{zp} = P_z k_{cH} \cos^2 \varphi_{\rm B} + P_{zT} \cos^2 \varphi_{\rm T}, \qquad 71$$

где P_x и P_z — горизонтальная и вертикальная проекции нагрузок от волн — должны определяться для двух случаев по п. 3.10 и 3.11 по формулам 64(56) и 65(57) и по формулам 68 и 69;

P_{xT} и *P_{xT}* — горизонтальная и вертикальная составляющие удельной нагрузки от действия на трубопровод течения—следует определять по формулам:

$$P_{x\tau} = 0.6 \frac{\gamma}{g} \, dv_1^2; \tag{72}$$

$$P_{z\tau} = -0.6P_{x\tau};$$
 73

 $\varphi_{\rm B}$ — угол между нормалью к оси трубопровода и лучом набегающей волны; $\varphi_{\rm T}$ — угол между нормалью к оси трубопровода и направлением течения; $\upsilon_{\rm T}$ — скорость придонных течений на расстоянии d от дна; $k_{\rm CH}$ — коэффициент снижения, учитывающий неодновременность действия напразна по вличе трубопроводо опроводологи слова. 22

нагрузки по длине трубопровода, определяемый по табл. 33.

Таблица 33

Расстояние между опорными точками по трассе трубопровода	Меньше 0,25λ	(0,2 5—0,5)⊼	(0,5 ,− 1,0)λ	Больше λ и без опор
Коэффициент снижения волновых нагрузок, ¢ _{сн}	0,8	0,7	0,6	0,5

2. Обеспеченность расчетной высоты волны в системе следует принимать для магистральных трубопроводов - 5%, для ответвлений магистральных трубопроводов — 13%.

3. Горизонтальная и вертикальная проекции нагрузок от волн на свободнолежащий на дне трубопровод в пределах прибрежных участков трассы, когда *H*≤*H*_{кр}, должны рассчитываться по указаниям п. 3.11, при значениях P_{xu} и P_{xc} , полученных по формулам 66(58) и 67(59) и умноженных на коэффициент knp, определяемый по формуле

$$k_{\rm np} = 1 + 1.2 \left(\frac{h_{\rm Kp} - h_{\rm np}}{H} \right)^{1.71},$$
 74

где h_{кр} — высота волны перед обрушением (при H_{кр}); h_{пр} — высота прибойной волны, которая определяется по указаниям пл. 20 и 21 приложения 1.

4. По полученным расчетным значениям горизонтальной P_{xp} и вертикальной Р_{гр} составляющих удельной нагрузки на свободнолежащий на дне трубопровод выполняется расчет устойчивости трубопровода в соответствии с действующими нормативными требованиями по проектированию сооружений, подверженных воздействию волн.

Пример 14. Дано: глубина у сооружения H = 50 м, $h_{1\%} = 10$ м, $\overline{\lambda} = -100$ м. Требуется определить P_{xM} , P_{zM} и соответствующие им значения P_z и P_x на горизонтальный элемент сквозного сооружения I класса, расположенный на уровне $z_{\rm u} = 5$ м, d = 0,5 м. По опытным данным $C_{\rm xc} = 1,33$.

Решение.

1. Максимальную величину горизонтальной составляющей нагрузки от волн определяем по п. 3.7.

При $\frac{a}{\overline{\lambda}} = \frac{0.5}{100} = 0,005$ по табл. 26(13) определяем $k_v = 1,0.$ При $\frac{H}{\overline{\lambda}} = \frac{50}{100} = 0.5, \ \frac{\overline{\lambda}}{h} = \frac{100}{10} = 10, \ \overline{z} = \frac{50-5}{50} = 0.9$ определяем по

графикам a и b, приведенным на рис. 39(19), $\theta_x = 0.7$ и $\varepsilon_x = 0.19$. По графикам, приведенным на рис. 32(17), определяем $\beta_u = 1.0$,

а по формуле $48(40) - \beta_c = \frac{4}{3}$.

По формуле 59(51)

$$P_{x\mathbf{h}} = \frac{1}{2} \cdot 1,0 \cdot 3,14^2 \cdot 0,5^2 \cdot \frac{10}{100} \cdot 1,0 \cdot 0,7 \cdot 1,0 = 0,0862 \text{ tc/m}.$$

По формуле 60(52)

$$P_{xe} = \frac{2}{3} \cdot 1,0 \cdot 3,14 \cdot 0,5 \cdot \frac{10^3}{100} \cdot 1,0^2 \cdot 0,19 \cdot 1,33 = 0,265 \text{ tc/m}.$$

Задаваясь различными значениями \bar{x} , по графикам 1 и 2, приведенным на рис. 38 (18), определяем δ_{xx} и δ_{xc} , и далее по формуле 58 (50) вычисляем P_{xm} . Результаты вычислений сводим в табл. 34.

Таблица 34

x	б _{хн}	Р б хи, тс/м	ð xc	P _{xc} δ _{xc} , τc/м	Р _{.х} , тс/м
0,01	0,05	0,0043	0,995	0,263	0,267
0,02	0,11	0,0094	0,99	0,262	0,271
0,03	0,19	0,0163	0,97	0,257	0,273
0,04	0,23	0,0198	0,94	0,249	0,269
0,29	0,95	0,082	0,05	0,013	0,069

Таким образом, $P_{xM} = 0.273$ тс/м при $\bar{x} = 0.03$.

2. Максимальную величину вертикальной составляющей нагрузки от волн определяем по п. 3.8.

При $\frac{H}{\overline{\lambda}} = 0.5$, $\frac{\overline{\lambda}}{h} = 10$ и $\overline{z} = 0.9$ определяем по графикам в и г, приведенным на рис. 39(19), $\theta_z = 0.7$ и $e_z = 0.19$.

По формуле 62(54)

$$P_{zu} = \frac{1}{2} \cdot 1,0 \cdot 3,14^2 \cdot 0,5^2 \cdot \frac{\cdot 10}{100} \cdot 1,0 \cdot 0,7 \cdot 1,0 = 0,0862 \text{ tc/m}.$$

По формуле 63(55)

$$P_{zc} = \frac{2}{3} \cdot 1,0 \cdot 3,14 \cdot 0,5 \cdot \frac{10^{\circ}}{100} \cdot 1,0^{\circ} \cdot 0,19 \cdot 1,33 = 0,265 \text{ tc/m}.$$

Задаваясь различными значениями \bar{x} , по графикам 1 и 2, приведенным на рис. 55 (23), определяем δ_{2R} и δ_{2c} , и далее по формуле 61 (53) вычисляем P_{2M} . Результаты вычислений сводим в табл. 35.

Таблица	35
---------	----

x	⁸ гн	-Р _{ги} ё _{ги} , тс/м	⁸ <i>z</i> с	$\left \begin{array}{c} -P_{zc}\delta_{zc},\\ \mathrm{TC/M} \end{array}\right $	Р _{гм, тс/м}
0,26 0,28 0,29 0,30	0,06 0,19 0,25 0,31	0,0052 0,0163 0,0215 0,0267	0,995 0,97 0,95 0,91	0,264 0,257 0,252 0,241	0,269 0,273 0,274 0,268
0,03	-0,99	0,0853	0,03	-0,008	0,077

Таким образом (см. также табл. 34), при $\bar{x} = 0.03$, $P_{xM} = 0.273$ тс/м, $P_z = 0.077$ тс/м, а при $\bar{x} = 0.29$ $P_{zM} = -0.274$ тс/м и $P_x = 0.069$ тс/м.

Пример 15. Дано: Морской глубоководный выпуск сточных вод. Наружный диаметр трубопровода d=0,45 м; план и профиль трассы представлены на рис. 62; скорость придонного вдольберегового течения на возвышении d от уровня дна $v_{\tau}=0,4$ м/с, направление течения перпендикулярно оси трубопровода; элементы расчетной волны на глубокой воде — $h_{r,r,5\%} = 5,5$ м, $\overline{\lambda} = 100$ м, $\overline{\tau} = 8$ с; объемный вес морской воды $\gamma = = 1,03$ тс/м³.

Требуется определить величину нагрузок от волн и течений на лежащий на дне трубопровод.

Решение.

Трасса трубопровода разбивается на ряд участков с учетом пояснения 1 к п. 3.11. Для каждого участка определяется средняя расчетная глубина моря. Затем на плане акватории в районе трассы трубопровода по

Рис. 62. К примеру 15 расчета нагрузок на подводный трубопровод *а*-план рефракций волн по трассе трубопровода; *б*-профиль дна по трассе трубопровода; *1*-трубопровод; *2*-динии фронта воли; *3*-луч воли.

указаниям п. 18 приложения 1 строится план рефракции для определения углов подхода волн к трассе трубопровода $\varphi_{\rm B}$, а по пп. 16—19 того же приложения определяются расчетные значения элементов волн 5%-ной обеспеченности ($h_{5\%}$ и $\overline{\lambda}$) для каждого участка трассы. Результаты расчетов приведены в табл. 36. Последовательность вычислений нагрузок на трубопровод проследим на примере второго участка.

По формулам 66(58) и 67(59) определяем соответственно инерционный P_{xu} и скоростной P_{xc} компоненты горизонтальной составляющей нагрузки от волн. Для этого по графикам, приведенным на рис. 39(19) и 48, при $H: \overline{\lambda}=0,173, \overline{\lambda}: h_{5\%}=16,5$ и z=0 находим коэффициент $\theta_x=0,57$, и по рис. 39(19), 49, учитывая нелинейность, по интерполяции между значе-

Таблица 36

Расчетные характеристики	Значения расчетных характеристик для участков						
участков трассы	1	2	3	4	5		
Средняя расчетная глу- бина моря <i>Н</i> , м Элементы расчетной	5	14	20	27	35		
$h_{5\%}$, M	3,8	4,9	5,1	5, 2	5,3		
$\overline{\lambda}$, \mathbf{M} $H: \overline{\lambda}$ $\overline{\lambda}: h_{5\%}$	56 0,09 14,7	81 0,173 16,5	87 0,230 17,0	- 92 0,294 17,7	96 0,365 18,1		
Угол подхода волн _{Фв} , град	65	50	45	40	35		

ниями, снятыми с этих графиков при ближайших относительных глубинах H : λ , — коэффициент $\varepsilon_x = 0.165$.

$$P_{XH} = \frac{3}{4} \cdot 1,03 \cdot 3,14^2 \cdot 0,45^2 \cdot \frac{4,9}{81} \cdot 0,57 = 0,0532 \text{ tc/m};$$

$$P_{\rm xc} = 1,03\cdot3,14\cdot0,45\cdot\frac{4,92}{81}\cdot0,165 = 0,0711$$
 TC/M.

По рис. 33 для параметра $X = \frac{0.0532}{0.0711} = 0.75$ находим значение $\overline{x} = 0,061$, и по графикам 3 и 4 при $H: \overline{\lambda} = 0,173$ и $\overline{\lambda}: h_{5\%} = 16,5$ оп-

ределяем $\delta_{xH} = 0,55$ и $\delta_{xc} = 0,79$. Согласно п. 3.10 рассматриваем два случая: а) P_{xM} и P_z ; по формуле 64(56) $P_{xM} = 0,0532 \cdot 0,55 + 0,0711 \cdot 0,79 = 0,0557 \cdot 0,0711 \cdot 0,79 = 0,0577 \cdot 0,0711 \cdot 0,79 = 0,0711 \cdot 0,0711 \cdot 0,79 = 0,0711 \cdot 0,0$ = 0.0855 TC/M;

- по формуле 65(57) $P_z = -\frac{9}{5} \cdot 0,0711 \cdot 0,79 = -0,1012$ тс/м; 6) P_{zM} и P_x ; по формуле 68 $P_{zM} = -\frac{9}{5} \cdot 0,0711 = -0,128$ тс/м,

и по формуле 69 $P_x = 0,0711$ тс/м. По формулам 72 и 73 находим горизонтальную и вертикальную составляющие нагрузки от течения:

$$P_{xT} = 0.6 \cdot \frac{1.03}{9.81} \cdot 0.45 \cdot 0.4^2 = 0.0045 \text{ TC/m};$$

$$P_{z\tau} = -0.6 \cdot 0.0045 = -0.0027 \text{ tc/m}.$$

Расчетные значения горизонтальной P_{xp} и вертикальной (подъемной) P_{zp} составляющих удельной нагрузки от волн и течений определяются также для двух случаев по формулам 70 и 71. Коэффициент $k_{cH} = 0.5$ (по табл. 33).

a)
$$P_{xo} = 0,0855 \cdot 0,5 \cos^2 50^\circ + 0,0045 \cdot 1 = 0,0217 \text{ TC/M};$$

 $P_{zp} = -0.1012 \cdot 0.5 \cdot 0.41 - 0.0027 \cdot 1 = -0.0237 \text{ tc/m};$

6)
$$P_{rp} = 0,0711 \cdot 0.5 \cdot 0.41 + 0.0045 \cdot 1 = 0.0187 \text{ tc/m};$$

$$P_{z0} = -0.128 \cdot 0.5 \cdot 0.41 - 0.0027 \cdot 1 = -0.0289 \text{ tc/m}.$$

По найденным расчетным значениям нагрузок от волн и течения далее выполняется расчет устойчивости трубопровода на дне моря,

3.12. Максимальную нагрузку от разбивающихся (разрушающихся) волн $Q_{\rm pm}$, тс, на вертикальную цилиндрическую преграду, диаметр которой $d \leq 0,4$ H, м, необходимо определять по значениям волновой нагрузки $Q_{\rm p}$, полученной для ряда положений преграды относительно вершины волны (рис. 63(24),а) с интервалом 0,1 $\frac{x}{H_0}$, начиная с $\frac{x}{H_0} = 0$ (где x -

Рис. 63 (24). Схема к определению нагрузок от разбивающихся волн и графики значений коэффициентов ври, врс.

расстояние, м, от вершины разбивающейся волны до оси вертикальной цилиндрической преграды).

Волновая нагрузка $Q_{\rm p}$, тс, для любого положения цилиндрической преграды относительно вершины волны должна определяться по формуле

$$Q_{\rm p} = Q_{\rm pu} + Q_{\rm pc}, \qquad 75(60)$$

где Q_{ри} и Q_{рс} -- инерционный и скоростной компоненты нагрузки от разбивающихся волн, тс, определяемые по формулам;

$$Q_{\mathbf{p}\mathbf{H}} = \frac{1}{2} \gamma \pi d^2 \left(H + \eta_{\mathbf{p}\mathbf{s}} \right) \, \delta_{\mathbf{p}\mathbf{H}}; \qquad \qquad 76(61)$$

где H₀ — глубина воды под подошвой волны, м, принимаемая равной (рис. 63(24), a):

$$H_0 = H - (h_{\rm pB} - \eta_{\rm pB}); 78(63)$$

- *h*_{рв} высота (трансформированной) волны, м, при первом обрушении в мелководной зоне с соблюдением условия *h*_{рв} ≤ 0,8*H*₀;
 η_{рв} превышение над расчетным уровнем воды вершины (при первом обру-
- шении) волны, м;
- бря и брс инерционный и скоростной коэффициенты, принимаемые по графикам рис. 63(24), б.

Рис. 64 (25). Графики значений инерционного гри и скоростного грс коэффициентов.

3.13. Удельную нагрузку от разбивающихся волн q_р, тс/м, на вертикальную цилиндрическую преграду на глубине z, м, от расчетного уровня (рис. 63(24), а) при относительном удалении оси преграды от вершины волны $\frac{x}{H_0}$ необходимо определять по формуле

$$q_{\rm p} = q_{\rm pH} + q_{\rm pc},$$
 79(64)

где qpn и qpc — инерционный и скоростной компоненты удельной нагрузки от разбивающихся волн, тс/м, на вертикальную преграду, определяемые по формулам:

$$q_{\rm pH} = \frac{1}{2} \gamma \pi d^2 \varepsilon_{\rm pH}; \qquad 80(65)$$

$$q_{\rm pc} = \frac{2}{5} \gamma d \left(H + \eta_{\rm pB}\right) \varepsilon_{\rm pc}; \qquad 81(66)$$

ε_{ри} и ε_{рс} — инерционный и скоростной коэффициенты, принимаемые соответственно по графикам а и б, приведенным на рис. 64(25), при значениях относительной глубины

$$\overline{z} = \frac{H-z}{H_0}$$

К пп. 3.12 и 3.13. Значения коэффициента бре всегда положительны, а значения коэффициента бри следует принимать положительными при $\frac{x}{H_0} > 0$ и отрицательными — при $\frac{x}{H_0} < 0$ (положительные значения x отсчитываются от вершины волны в направлении распространения волны, см. рис. 63(24), а).

Точка приложения максимальной нагрузки $Q_{\rm pM}$ определяется по эпюре удельных волновых нагрузок, построенной согласно указаниям п. 3.13 для фазы волны $\frac{x}{H_0}$, соответствующей $Q_{\rm pm}$.

Расчет волновой нагрузки на преграду по пп. 3.12, 3.13 производится для волн с высотой обеспеченностью 1%, испытывающих первое обрушение в створе преграды при глубине $H = H_{\rm Hp}$. Элементы этих волн определяются по пп. 20, 21 приложения 1. При этом должны быть рассмотрены два расчетных случая.

Первый случай — у преграды происходит первое обрушение (Н = = H_{кр}) глубоководных волн с высотой обеспеченностью 1% в системе расчетного (по классу сооружения) шторма. Если окажется, что указанные волны обрушиваются впереди преграды (H<H_{кр}) и, таким образом, сооружение оказывается в прибойной зоне, то следует рассмотреть второй случай, когда у преграды происходит первое обрушение волн с высотой обеспеченностью 1%, но при шторме меньшей интенсивности, чем расчетный. Параметры глубоководных и разрушающихся волн для этого шторма определяются подбором согласно приложению 1, пп. 13, 15, 20, 21, исходя из условия $H = H_{\rm Kp}$.

Если после определения высоты разрушающейся волны h_{pp} и глуби-ны H_0 окажется, что отношение $\frac{h_{pB}}{H_0} > 0.8$, то его следует принять равным 0,8. При этом расчетные значения H_0 определяются по формуле

$$H_0=\frac{H+\eta_{\rm PB}}{1.60},\qquad 82$$

исходя из предположения, что положение вершины гребня разрушающейся волны не изменяется по высоте преграды.

Значения коэффициента ерс всегда положительны, а значения коэффициента ε_{pu} следует принимать положительными при $\frac{x}{H_0} > 0$ и отрицательными — при $\frac{x}{H_0} < 0$.

Верхняя точка эпюры удельных нагрузок на преграду для рассматриваемой фазы волны $\frac{x}{H_0}$ определяется по значению \overline{z} , выбираемому на уровне точки пересечения соответствующей кривой на рис. 64(25), б с пунктирной линией (ограничивающая кривая), характеризующей профиль разрушающейся волны.

Пример 16. Дано: сооружение I класса капитальности; вертикальные сваи d = 0.5 м и d = 1.6 м; глубина у сооружения H = 10 м; уклон дна $m_{\alpha} = 100$; скорость ветра W = 20 м/с; разгон D = 675 км, рефракция отсутствует; волнение установившееся.

Требуется определить максимальные равнодействующие волновых нагрузок и ординаты точек приложения этих нагрузок для указанных свай.

Решение.

1. Определяем средние элементы воли на глубокой воде по прило-

жению 1, п. 13 рис. 116 (38). Вычисляем $\frac{gD}{W^2} = \frac{9,81.675000}{20^2} = 16550$, откуда по рис. 116(38) $\frac{g\overline{h}_{r\pi}}{W^2} = = 0,110$ и $\frac{g\overline{\tau}}{W} = 4,82$; соответственно, $\overline{h}_{r\pi} = 4,70$ м, $\overline{\tau} = 9,82$ с.

Высота глубоководной волны обеспеченностью 1% определяется по п. 15 и рис. 117(39). Параметр $\frac{gD}{W^2} = 16550 > 12000$, откуда по рис. 117(39)

		Глубоководная зона								
№ П/п	₩°, м/с	$\frac{gD}{W^{\prime 2}}$	$\frac{g\overline{h}_{\Gamma,\Lambda}}{W^2}$	- gr W	<i>ћ</i> _{гл} , м	т _г л, с	λ _{гл} , м	*1 %	^h гл1%, м	
$\frac{1}{2}$	20 18 18,5	16550 20270 19300	0,110 0,115 0,114	4,82 4,97 4,95	4,70 3,80 3,97	9,82 9,13 9,35	150 130 136	2,42 2,42 2,42 2,42	11,40 9,20 9,60	

получаем $k_{1\%} = 2,42$, а $h_{r,n,1\%} = 2,42 \cdot 4,70 = 11,40$ м. Средняя длина волн на глубокой воде определяется по формуле 187(151) при $\tau = 9,82$ с:

$$\overline{\lambda}_{\Gamma,\Pi} = \frac{9,81 \cdot 9,82^2}{2 \cdot 3,14} = 150 \text{ M}.$$

2. Определение расчетной зоны волнения в месте расположения сооружения.

Случай 1. Определяем критическую глубину $H_{\rm RP}$ при первом обрушении глубоководных воли расчетного шторма без учета рефракции ($k_{\rm P}$ =1).

Согласно п. 21 по рис. 125(42), полагая в первом приближении $\frac{h_i}{g\tau^2} = \frac{h_{rA\,1\%}}{g\tau^2} = \frac{11,40}{9,81,9,82^2} = 0,0121$, с учетом уклона дна $1:m_{\alpha} = 0,01$, по кривой 2, определяем $\frac{H_{\kappa pI}}{\overline{\lambda}_{rA}} = 0,101$, откуда $H_{\kappa pI} = 0,101 \cdot 150 = 15,15$ м.

Согласно требованиям, приведенным в пп. 17, 18, при $\frac{H_{\rm KPI}}{\lambda_{\rm FR}}$ =0,101 принимаем по рис. 125(42) и табл. 105(39) значения коэффициентов $k_{\rm r}$ = 0,933 и $k_{\rm n}$ = 0,86; коэффициент k_i = $k_{1\%}$ = 2,42 (см. выше); коэффициент рефракции k_p = 1.

По формуле 191(153) определяем высоту волны обеспеченностью 1% на глубине $H_{\kappa pl}$

 $(h_{1\%})_{H_{KDI}} = 0.933 \cdot 1.0 \cdot 0.86 \cdot 2.42 \cdot 4.70 = 9.13$ M.

По рис. 125(42), полагая во втором приближении

$$\frac{h_i}{g\bar{\tau}^2} = \frac{(h_{1\%})_{H_{\text{Kpl}}}}{g\bar{\tau}^2} = \frac{9.13}{9.81 \cdot 9.82^2} = 0.00968,$$

с учетом уклона дна 1: $m_{\alpha} = 0,01$, по кривой 2 определяем $\frac{H_{\kappa p}}{\overline{\lambda_{ra}}} = 0,080$, откуда искомая критическая глубина $H_{\kappa p} = 0,080 \cdot 150 = 12,0$ м.

Так как первое обрушение глубоководных волн происходит на глубине, большей, чем глубина у сооружения (12>10 м), то последнее оказывается в прибойной зоне; соответственно этому следует выполнить расчеты для случая 2.

Результаты расчетов элементов волнения для расчетного по классу сооружения шторма (случай 1) представлены в табл. 37, строчка 1.

Случай 2. Определим параметры обрушивающейся в створе сооружения волны с высотой обеспеченностью 1% в системе шторма, имеющего меньшую интенсивность, чем расчетный шторм, при той же длине разгона. Задаваясь различными скоростями ветра, меньшими, чем 20 м/с, повторим расчеты $H_{\rm Kp}$, добиваясь выполнения условия $H_{\rm Kp}=H=10$ м. Расчеты сводим в табл. 37, строчки 2, 3.

Таблица 37

 	Первое приближение					Второе пр	иближение	
<u>h_{ГА1 %} gī2</u>	<u>H_{крі} ⊼_{гл}</u>	<i>Н_{кр}і,</i> м	k _T	k _n	^{(h} 1%)Н _{кр}], м	$\frac{h_i}{g^{\bar{\tau}^2}} = \frac{(h_1 _{\aleph})_{H_{\kappa \mathrm{pl}}}}{g^{\bar{\tau}^2}}$	Η _{κρ} λ _{гл}	Н _{кр} , м
0,0121 0,112 0,112	0,101 0,092 0,092	15,15 12,0 12,5	0,933 0,94 0,94	0,86 0,852 0,852	9,13 7,35 7,67	0,00968 0,0090 0,00895	0,080 0,073 0,073	12,0 9,48 9,93

Таким образом, на глубине $H_{\rm Kp} = 9,93 \approx 10$ м будут испытывать первое обрушение глубоководные волны, имеющие следующие элементы: $\bar{h}_{\rm r,\pi} = 3,97$ м; $h_{\rm r,a\,1\%} = 9,60$ м; $\bar{\tau}_{\rm r,\pi} = 9,35$ с; $\bar{\lambda}_{\rm r,\pi} = 136$ м (табл. 37, строка 3).

ала – 0,07 м, игд 1% – 0,00 м, тал = 0,05 с, ла = 130 м (таол. 37, строка 3). 3. Определение элементов волн в месте обрушения при $H=H_{\kappa p}=$ = 10 м. Высоту волны обеспеченностью 1% при первом обрушении $h_{pB 1\%} = h_{ap 1\%}$ определяем по приложению 1, п. 20, рис. 125 (42). При $\frac{H_{\kappa p}}{\overline{\lambda_{ra}}} = \frac{10}{136} = 0,0735$, с учетом 1: $m_{\alpha} = 0,01$, по кривой 2 рис. 125 (42) находим $\frac{h_{np 1\%}}{g\tau^2} = 0,009$, откуда высота разрушающейся волны $h_{pB 1\%} =$ $= h_{np 1\%} = 0,009 \cdot 9,81 \cdot 9,35^2 = 7,70$ м. Длина этой волны определяется по верхней огибающей кривой рис. 123 (41) при $\frac{H_{\kappa p}}{\overline{\lambda_{ra}}} = 0,0735$; получаем $\frac{\overline{\lambda_{np}}}{\overline{\lambda}} = 0,77$, откуда $\overline{\lambda_{np}} = 0,77 \cdot 136 = 105$ м.

Возвышение гребня обрушающейся волны η_{pB} с высотой обеспеченностью 1% определяется по верхней огибающей кривой на рис. 118 (40). При $\frac{H_{KP}}{\overline{\lambda}_{FA}} = 0,0735$ получаем $\frac{\eta_{pB}}{h_{pB,1\%}} = 0,83$, откуда $\eta_{pB} = 0,83 \cdot 7,70 = 6,40$. Глубина от подошвы разрушающейся волны до дна равна

$$H_0 = 10 - (7,70 - 6,40) = 8,70 \text{ M}.$$

Отношение $\frac{h_{\text{рв 1}8}}{H_0} = \frac{7.70}{8.70} = 0.885 > 0.8$, Принимаем $\frac{h_{\text{рв}}}{H_0} = 0.8$ и вычисляем расчетное значение H_0 по формуле 82

$$H_0 = \frac{10 + 6,40}{1,80} = 9,12 \text{ M}.$$

Тогда расчетная величина hpв равна

$$h_{\rm DB} = 0.8H_0 = 0.8 \cdot 9.12 = 7.30$$
 M.

 Определение максимальной величины и точки приложения нагрузки от разрушающихся волн на цилиндрические сваи диаметром 0,5 и 1,6 м.

а) Свая диаметром d = 0,5 м.

Определяем наибольшие значения скоростной $Q_{pc \text{ макс}}$ и инерционной $Q_{ph \text{ макс}}$ составляющих волновой нагрузки по п. 3.12. По рис. 63 (24), б при $\frac{x}{H_0} = 0$ получаем $\delta_{pc \text{ макс}} = 0,375$, а при $\frac{x}{H_0} = \pm 0,80 - \delta_{pn \text{ макс}} = \pm 0,236$.

По формулам 76 (61) и 77 (62) при $\gamma = 1$ т/м³, $H = H_{\kappa p} = 10$ м, $H_0 = 9,12$ м и $\gamma_{p_B} = 6,40$ м

 $Q_{\text{римакс}} = \pm 0.5 \cdot 1.0 \cdot 3.14 \cdot 0.5^2 \cdot (10.0 + 6.40) \cdot 0.236 = \pm 1.52 \text{ tc.}$

 $Q_{\text{pc Makc}} = 1,0.0,4.0,5.(10,0+6,40).9,12.0,375 = 11,20 \text{ tc.}$

Так как отношение $\frac{Q_{\text{ри макс}}}{Q_{\text{рс макс}}} = \frac{1,52}{11,20} = 0,136 < 0,20$, то согласно примечанию 3 к п. 3.1 за расчетную максимальную волновую нагрузку принимаем $Q_{\text{рс макс}} = 11,20$ тс. Построение эпюры удельных нагрузок производим по п. 3.13 при учете только скоростной составляющей нагрузки $q_{\text{p}} = q_{\text{pc}}$ и $\frac{x}{H_0} = 0$.

Согласно формуле 81(66) получаем

 $q_{\rm pc} = 0.4 \cdot 1.0 \cdot 0.5 (10.0 + 6.40) \varepsilon_{\rm pc} = 3.28 \varepsilon_{\rm pc}, \ {\rm tc/m}.$

Значения скоростного коэффициента s_{pc} определяем по кривой, соответствующей $\frac{x}{H_0} = 0$ на рис. 64 (25), б, задаваясь различными зна-

чениями относительной глубины $z = \frac{H-z}{H_0}$.

Возвышение соответствующих сечений над дном вычисляется по формуле $y=H-z=H_0z$, м. По вычисленным значениям $q_{\rm pc}$ определяем $Q_{\rm pc}$ макс как площадь эпюры $q_{\rm pc}$, и вычисляем высоту точки приложения $Q_{\rm pc}$ макс над дном. Результаты расчетов сводим в табл. 38. Высота точки приложения $Q_{\rm pc}$ макс над дном равна

$$y_{Q_{\text{pc Make}}} = \frac{\sum Q_l r_l}{Q_{\text{pc Make}}} = \frac{121,86}{11,495} = 10,86 \text{ M}.$$

б) Свая диаметром d = 1,6 м. При тех же значениях параметров волн по формулам 76(61) и 77(62) получаем:

 $Q_{\text{PH MARC}} = \pm 0.5 \cdot 1.0 \cdot 3.14 \cdot 1.6^2 (10.0 + 6.40) \cdot 0.236 = \pm 15.60 \text{ tc};$

$$Q_{\text{pc Make}} = 1.0 \cdot 0.4 \cdot 1.6 (10 + 6.40) \cdot 9.12 \cdot 0.375 = 35.7 \text{ tc.}$$

Так как отношение $\frac{15,60}{35,7} = 0,438 > 0,20$, то наибольшее расчетное зна-

чение волновой нагрузки определяем подбором, как сумму скоростной и инерционной составляющих для различных фаз волны, согласно п. 3.12.

Таблица	38
---------	----

- z 1	$y = H_0 \overline{z},$	^е рс 	$q_{pc} = 3,28\varepsilon_{cp},$ TC/M	$\frac{q_{pc_i}+q_{pc_{i+1}}}{TC/M}$	$\frac{\frac{1}{2}\Delta y = \frac{1}{2} \times (y_i - y_{i+1}),}{\frac{M}{6}}$	$\Delta Q_i = \frac{1}{2} \Delta y \times \\ \times (q_{\text{pc}_i} + q_{\text{pc}_{i+1}}), \\ \frac{\text{TC}}{7}$	$\frac{r_i = y_{i+1} + \frac{1}{2} \Delta y_i}{\frac{M}{8}}$	Δ Q_ir_i , τсм 9
1,8 1,7 1,6 1,5 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,00	16,4 15,5 14,6 13,7 12,8 10,9 9,1 7,3 5,5 3,6 1,8 0,00	0,588 0,477 0,394 0,216 0,174 0,146 0,136 0,117 0,111 0,109	1,928 1,560 1,290 1,087 0,932 0,708 0,571 0,479 0,446 0,384 0,364 0,357	3,488 2,850 2,377 2,019 1,640 1,279 1,050 0,925 0,830 0,748 0,721	0,45 0,45 0,45 0,95 0,95 0,90 0,90 0,90 0,90 0,90 0,9	1,570 1,283 1,070 0,910 1,560 1,215 0,945 0,832 0,788 0,674 0,648	15,95 15,05 14,15 13,25 11,85 10,05 8,20 6,40 4,55 2,70 0,90	25,06 19,30 15,15 12,05 18,50 12,75 7,75 5,32 3,58 1,82 0,58
				Q _{pc}	$_{\rm Make} = \Sigma \Delta Q_i =$	= 11,495	$\Sigma \Delta Q_i r_i =$	121,86

В этом случае инерционная составляющая волновой нагрузки определяется по формуле 76(61)

$$Q_{pu} = 0.5 \cdot 1.0 \cdot 3.14 \cdot 1.6^2 (10 + 6.40) \delta_{pu} = 66.2 \delta_{pu}$$
, rc,

а скоростная составляющая — по формуле 77 (62)

$$Q_{\rm pc} = 1.0 \cdot 0.4 \cdot 1.6 (10 + 6.40) \cdot 9.12 \, \delta_{\rm pc} = 95.0 \, \delta_{\rm pc}$$
, TC

Значения коэффициентов δ_{pn} и δ_{pc} определяем по рис. 63(24), б, задаваясь различными значениями $\frac{x}{H_0}$, начиная с $\frac{x}{H_0} = 0$ с интервалом через 0,1. Так как x > 0, то $\delta_{pc} > 0$ и $\delta_{pn} > 0$. Расчеты сведены в табл. 39.

За расчетное значение волновой нагрузки принимаем $Q_{\rm PM} = 36,30$ тс при $\frac{x}{H_0} = 0,20$. Для определения точки приложения волновой нагрузки $Q_{\rm PM}$ следует построить эпюру волновой нагрузки $q_{\rm p} = q_{\rm pu} + q_{\rm pc}$ для фазы волны $\frac{x}{H_0} = 0,2$, пользуясь формулами 80(65), 81(66). Коэффициенты $e_{\rm PM}$ и $e_{\rm pc}$ в этих формулах следует определять по рис. 64(25), *a* и *b*, задаваясь различными значениями \overline{z} при $\frac{x}{H_0} = 0,2$. Вычисления следует производить в табличной форме, аналогично табл. 38.

Таблица	39
---------	----

<i>x</i> / <i>H</i> ₀	δ _{pc}	б	Q _{рн} =66,2∂ _{рн} , тс	Q _{pc} =95,08 _{рс} , тс	$Q_{\mathbf{p}} = Q_{\mathbf{p}\mathbf{u}} + Q_{\mathbf{p}\mathbf{c}},$	Q _{рм} , тс
0	0,375	0	0	35,70	35,70	36,30
0,10	0,330	0,070	4,62	31,18	35,80	
0,20	0,295	0,125	8,27	28,03	36,30	
0,30	0,264	0,165	10,90	25,06	35,96	
0,40	0,230	0,190	12,55	21,83	34,38	
0,50	0,204	0,208	13,75	19,38	33,13	

Нагрузки от волн на сквозное сооружение из обтекаемых элементов

3.14. Нагрузку от волн на сквозное сооружение в виде стержневой системы необходимо получать суммированием нагрузок, определенных согласно требованиям пп. 3.1—3,9 настоящей главы, как на отдельно стоящие преграды с учетом положения каждого элемента относительно профиля расчетной волны. Элементы сооружения следует принимать как отдельно стоящие обтекаемые преграды при расстояниях между их осями l, м, равных и более трех диаметров d, м; при l < 3d (где d — наибольший диаметр элемента) волновую нагрузку, полученную на отдельностоящий элемент сооружения, необходимо умножать на коэффициенты сближения по фронту C_{ϕ} и по лучу C_{π} волн, принимаемые по табл. 40(14).

, , ,	Т	`ab	лиц	a 40	(14)
-------	---	-----	-----	------	------

Относительное расстояние	Көэффии	Коэффициенты сближения $C_{igoplus}$ и C_{A} при эни относительных днаметров $d/\overline{\lambda}$						
между осями преград 1/d		² ф		C _л				
	0,1	0.05	0,1	0,05				
3 2,5 2 1,5 1,25	1 1,04 1,2 1,4	1 1,05 1,15 1,4 1,65	1 1 0,97 0,87 0,72	1 0,98 0,92 0,8 0,68				

3.15. Нагрузки от волн на наклонный элемент сквозного сооружения необходимо получать по эпюрам горизонтальной и вертикальной составляющих нагрузки, ординаты которых должны определяться согласно требованиям п. 3.9 настоящей главы с учетом заглубления под расчетный уровень и удаления от вершины расчетной волны отдельных участков элемента.

Примечание. Нагрузку от волн на элементы сооружения, наклоненные к горизонтали или вертикали под углом менее 25, град., допускается определять соответственно по пп. 3.4 и 3.9, как на вертикальную или горизонтальную обтекаемую преграду.

3.16. Динамическую нагрузку от действия нерегулярных ветровых волн на сквозное сооружение из обтекаемых элементов следует определять умножением значения статической нагрузки, полученной согласно требованиям пп. 3.14 и 3.15 настоящей главы, от волны с высотой, заданной обеспеченности в системе, и средней длиной на коэффициент динамичности $k_{\rm A}$, принимаемый по табл. 41 (15)

Таблица 41(15)

Отношение периодов т _с /т	0,01	0,1	0,2	0,3
Коэффициенты динамичности <i>k_д</i>	1	1,15	1,2	1,3
где <u>т_с — период собственных</u> т — средний период волн,	колебаний со с.	оружения, с;		

При отношениях периодов $\frac{\tau_c}{\tau} > 0,3$ необходимо выполнять динамический расчет сооружения.

3.17. В прибойной зоне при $\frac{h}{H} \leq 0,8$ допускается нагрузки от волн на сквозные сооружения определять по методам, основанным на данных натурных наблюдений.

K nn. 3.14 и 3.15. 1. Максимальная расчетная напрузка от волн на сооружение определяется методом последовательных приближений. Расчетная схема сооружения (рис. 65, а) заменяется упрощенной (рис. 65, б), в которой основные вертикальные и наклонные элементы представлены только вертикальными колоннами осредненного диаметра, а остальные элементы исключены. Для вертикальной колонны по формуле 44(36) с учетом примечаний к п. 3.1 строится график $Q = f(\bar{x})$, (рис. 65, θ), при этом горизонтальные масштабы графика $(\bar{x} = \frac{x}{\bar{\lambda}})$ и упрощенной схемы сооружения $(\frac{l}{5})$ должны быть одинаковыми. Затем на график $Q = f(\overline{x})$ накладывается упрощенная схема сооружения на таком относительном удалении от вершины волны x, чтобы расчетная нагрузка от волн на все осредненные вертикальные колонны была наибольшей. Это достигается методом последовательных попыток; при этом горизонтальная волновая нагрузка вычисляется суммированием ординат графика $Q = f(\overline{x})$, соответствующих положению осей колонн. При полученном таким путем значении х производится расчет наибольшей волновой нагрузки для расчетной схемы сооружения (фактической). Для сложных схем сооружения выполняются контрольные расчеты при больших и меньших значениях x.

2. Ординаты эпюры горизонтальной проекции удельной нагрузки от волн определяются по п. 3.9; при этом поперечные размеры преграды принимаются равными размерам сечения горизонтальной или вертикальной плоскостями. Нагрузка от волн на элемент сооружения определяется как площадь эпюры удельной нагрузки, построенной на соответствующей проекции этого элемента на нормаль к лучу волны. Аналогичным путем определяются ординаты эпюры вертикальной проекции удельной нагрузки от волн.

Поперечные размеры преграды, продольная ось которой перпендикулярна лучу волны или соответствующей проекции скорости (v_x, v_z) , допускается определять в плоскости, нормальной к оси преграды, а эпюру нагрузки — строить на ее длине. Волновые нагрузки при расчете прочности узлов или устойчивости отдельных элементов сквозного сооружения (опор, связей, раскосов и т. д.) следует определять как максимальные на данный элемент сооружения.

Рис. 65: Расчетные схемы и графики к расчету (пример 17) сквозного сооружения стержневой системы *a*-расчетная схема; *б*-упрощенная схема; *в*-график *Q*=*f*(*x*).

Горизонтальную проекцию нагрузки от волн на элементы сквозного сооружения, расположенные в плоскости, перпендикулярной лучу волны, определяют в соответствии с пояснениями к п. 3.2, как на преграду неполной высоты.

Размеры поперечного сечения элемента (а и в) определяются в сечении этого элемента горизонтальной плоскостью.

Пример 17. Дано: H = 15 м, h = 5,0 м, $\overline{\lambda} = 50$ м, $\gamma = 1$ тс/м³. Сооружение решетчатой конструкции из цилиндрических стоек d = 0,5 м, горизонтальных элементов d = 0,3 м и раскосов d = 0,3 м (рис. 65, *a*). Требуется определить максимальную горизонтальную составляющую волновой нагрузки и опрокидывающий момент относительно оси, проходящей по дну в створе задней грани 19—20.

Решение.

1. Выполняем расчет в соответствии с п. 3.14 и пояснением к нему. Строим упрощенную схему блока в виде сооружения из двух рядов вертикальных свай d=0,5 м, расположенных на относительном расстоянии $l: \lambda = 5/50 = 0,1$ (рис. 65, б).

По формулам 45 (37) и 46 (38) определяем инерционный и скоростной компоненты нагрузки от волн на основной элемент-сваю d = 0,5 м при $\frac{H}{\bar{\lambda}} = 0,3$ и $\frac{\bar{\lambda}}{h} = 10$:

$$Q_{\rm HM} = \frac{1}{4} \cdot 1,0 \cdot 3,14 \cdot 0,5^2 \cdot 5,0 \cdot 1,0 \cdot 0,9 \cdot 1,0 = 0,89 \text{ tc};$$
$$Q_{\rm CM} = \frac{1}{12} \cdot 1,0 \cdot 0,5 \cdot 5,0^2 \cdot 1,0^2 \cdot 1,64 \cdot 1,0 = 1,71 \text{ tc}.$$

По формуле 44 (36) для ряда значений \overline{x} находим Q. Результаты расчетов сводим в табл. 42 и строим график $Q = f(\overline{x})$, рис. 65, *в*.

Таблица	42
---------	----

x	0,25	-0,2	0,15	0,1	0,05	0	0,05	0,1	0,15	0,2	0,25
δ _{ii}	-0,97	-1,06	-1,05	0,89	-0,51	0	0,51	0,89	1,05	1,06	0,97
Qимди, тс	0,864	0,945	-0,935	0,792	-0,454	0	0,454	0,792	0,935	0,945	0,864
ð _c	0	0,04	0,21	0,5	0,84	1,0	0,84	0,5	0,21	0,04	0
Q _{см} б _с , тс	, 0	0,069	0,36	0, 8 55	1,435	1,71	1,435	. 0 ,8 55	0,36	0,069	0
<i>Q</i> , тс	0,864	—0,876	0,57 5	0,063	0,981	1,71	1,889	1,647	1,295	1,014	0,864

Для определения расчетного положения сооружения относительно гребня волны \overline{x} наложим упрощенную схему его (рис. 65, 6) на график Q = f(x) (рис. 65, в) так, чтобы суммарная нагрузка от волн на первый и второй ряд свай была наибольшей.

В данном случае это достигается при одинаковой нагрузке на сваи первого и второго ряда Q = 1,68 тс и относительном удалении их от вершины волны $x_1 = -0,004$ и $x_2 = 0,096$.

Для удобства производства расчетов объединяем однотипные элементы в группы: вертикальные, наклонные (в двух плоскостях) и горизонтальные элементы (нормальные к лучу волны, расположенные под углом и параллельно лучу волны).

2. Определяем горизонтальные составляющие волновой нагрузки на каждый элемент решетчатого блока и плечи этих сил относительно оси 19—20 (рис. 65,*a*).

а) На вертикальные элементы 1-17, 2-18, 3-19 и 4-20.

Первый ряд свай имеет $\bar{x} = -0,004$; по интерполяции на рис. 30 (15) и рис. 37 при $\frac{\bar{\lambda}}{h} = 10$, $\frac{H}{\bar{\lambda}} = 0,3$ и $\bar{x} = -0,004$ находим $\delta_{\mu} = -0,03$ и $\delta_{c} = 1,0$; по формуле 44 (36)

$$Q_{1-17 \text{ m } 2-18} = 0.89 \cdot (-0.03) + 1.71 \cdot 1 = 1.68 \text{ tc.}$$

Поскольку $\dot{Q} \approx Q_{cM}$, тс, $\mu_c = 1,0$, и по формуле 56 (48) z_{O1-17} и $z_{-18} = 1.0,025 \cdot 50 = 1,25$ м.

Второй ряд свай имеет $\overline{x} = 0,096$; по рис. 30 (15) и 37 $\delta_{\mu} = 0,88$, $\delta_{c} = 0,53$; по формуле 44 (36)

$$Q_{3-19 \text{ H} 4-20} = 0.89 \cdot 0.88 + 1.71 \cdot 0.53 = 1.68 \text{ TC}.$$

Ординату точки приложения силы Q вычисляем по п. 3.5. По графикам / и 2, приведенным на рис. 41 (21), при $\frac{H}{\bar{\lambda}} = 0,3$ и $\frac{\bar{\lambda}}{h} = 10$, определяем соответственно $\bar{z}_{QH} = 0,11$ и $\bar{z}_{Qc} = 0,025$.

По графикам рис. 42 (22) и 52 при $\overline{x} = 0,096$, $\frac{\overline{\lambda}}{\hbar} = 10$ и $\frac{H}{\overline{\lambda}} = 0,3$ определяем $\mu_{\rm H} = 0,62$ и $\mu_{\rm c} = 1,72$.

По формуле 55 (47)

$$z_{QW} = 0.62 \cdot 0.11 \cdot 50 = 3.41$$
 м.

По формуле 56 (48)

 $z_{Qc} = 1,72 \cdot 0,025 \cdot 50 = 2,15$ м.

По формуле 54 (46)

$$\mathbf{z}_{Q_{3-19 \text{ is } 4-20}} = \frac{1}{1,68} (0.89 \cdot 0.88 \cdot 3.41 + 1.71 \cdot 0.53 \cdot 2.15) = 2.75 \text{ m};$$

б) На наклонные элементы 2-5, 6-9, 10-13, 14-17, 3-8, 7-12, 11-16 и 15-20.

В соответствии с пояснением к п. 3.15, если размеры элемента определяются по сечению горизонтальной плоскостью, то a=d=0,3 м,

$$b = \frac{d}{\cos \omega_1} = \frac{d}{\cos 45} = \frac{0.3}{0.707} = 0.424 \text{ M}, \qquad \frac{a}{b} = \frac{0.3}{0.424} = 0.71.$$

По графикам, приведенным на рис. 32(17), при $\frac{a}{b} = 0.71$ $\beta_{\mu} = 0.86$ и $\beta_c = 1.1$. Поскольку сумма проекций элементов 2—5, 6—9, 10—13 и 14—17 на вертикаль равна длине сваи полной высоты, то расчет нагрузки ведем как для сваи полной высоты.

По формуле 45(37)

$$Q_{\text{HM}} = \frac{1}{4} \cdot 1, 0 \cdot 3, 14 \cdot 0, 424^2 \cdot 5 \cdot 1, 0 \cdot 0, 9 \cdot 0, 86 = 0,55 \text{ tc.}$$

По формуле 46 (38)

$$Q_{\rm CM} = \frac{1}{12} \cdot 1,0 \cdot 0,424 \cdot 5^2 \cdot 1,0^2 \cdot 1,64 \cdot 1,1 = 1,59 \text{ rc.}$$

в) На наклонные элементы в плоскости 1—17—18 по формуле 44 (36) при x = -0.004

$$Q_{2-17} = 0.55 \cdot (-0.03) + 1.59 \cdot 1.0 = 1.57$$
 TC;

по формуле 56(48) находим ординату точки приложения нагрузки $z_{Q2-17} = 1,0.0,025.50 = 1,25$ м.

Аналогично для наклонных элементов в плоскости 3—19—20 имеем: $Q_{3-20} = 0.55 \cdot 0.88 + 1.59 \cdot 0.53 = 1.329$ тс,

$$z_{Q3-20} = \frac{1}{1,33} (0,55 \cdot 0,88 \cdot 3,41 + 1,59 \cdot 0,53 \cdot 2,15) = 2,61$$
 м.

г) Поскольку сечения горизонтальными плоскостями наклонных элементов в плоскостях 2—18—19 и 1—17—20 находятся на разных расстояниях от вершины волны, то для определения нагрузок от воли, согласно п. 3.15, построим эпюры удельных нагрузок от воли на вертикальную проекцию каждого элемента. Поперечные размеры элемента:

$$a = \frac{d}{\cos \omega_3} = \frac{0.3}{0.707} = 0.424 \text{ m};$$

$$a = d = 0.3 \text{ m};$$

$$\frac{a}{b} = \frac{0.424}{0.3} = 1.4.$$

, рис. 32 (17), при $\frac{a}{b} = 1.4$

По графикам, р ис. 32(17), при <u>—</u>, —

$$\beta_{\rm H} = 1.21$$
 и $\beta_{\rm c} = 0.84$.

По п. 3.3 строим профиль волны в пределах сооружения $(\bar{x}, \text{ до } \bar{x}_2)$ и определяем координаты точки пересечения с ним стержня 1—8 (или 2-7) $\eta_3 = -2,75$ м и $x_3 = 0,04$. Далее определяем значения q по п. 3.4 для стержней 1—8 и 2—7 при \overline{x} =0,04 и 0,096, а для остальных стержней по середине и концам элементов при $\bar{x} = -0,004$; 0,046 и 0,096.

Так, для стержней 1-8 и 2-7 имеем:

$$z = \eta_3 = -2.75$$
 M; $\overline{x} = 0.04;$
 $k_v = 1.0;$ $\beta_H = 1.21;$ $\beta_C = 0.84;$ $\overline{z} = \frac{15 + 2.75}{15} = 1.18.$

По графикам, приведенным на рис. 48 и 49, при $\frac{H}{\lambda} = 0,3$ и $\frac{\lambda}{L} =$ $= 10 \ \theta_r = 1,36 \ H \ \varepsilon_r = 0,72.$

По формуле 50 (42)

$$q_{\rm HM} = 1.0 \cdot \frac{3.14^2 \cdot 0.3^2}{2} \cdot \frac{5}{50} \cdot 1.0 \cdot 1.36 \cdot 1.21 = 0.073 \text{ tc/m}.$$

По формуле 51 (43)

$$q_{\rm CM} = 1.0 \cdot \frac{2}{3} \cdot 3.14 \cdot 0.3 \cdot \frac{5^2}{50} \cdot 1.0 \cdot 0.72 \cdot 0.84 = 0.189 \ \text{tc/m}.$$

По графикам 1 и 2, приведенным на рис. 38(18) и 47, определяем при $x = 0.04 \delta_{xu} = 0.25$ и $\delta_{xc} = 0.94$.

Таблица 43

2, M	z	9 _x	^E x	<i>q</i> _{іім} , кгс/м	<i>q_{см},</i> кгс/м	^ъ хн	9 _{нм} б _{хн} , кгс/м	^õ xc	^q см ⁸ хс, кгс/м	<i>q</i> . кгс/м
-2,75	1,18	1,36	0,72	73	189	0,25	18	0,94	178	196
0	1	0,97	0,37	52	97	0,57 0,03	30 1,5	0,66 1,0	64 97	94 95
2,5	0,835	0,71	0,2	38	53	0,28	11	0,91	48	59
5,0	0,67	0,54	0,11	29	29	0,57 0,03	17 1	0,66 1,0	19 29	36 28
7,5	0,5	0,42	0,07	23	18	0,28	6	0,91	16	22
10	0,33	0,34	0,04	18	11	0,57 0,03	10 0,6	0,66 1,0	7 11	17 10
12,5	0,17	0,3	0,03	16	8	0,28	4,5	0,91	7	12
15	0	0,28	0,03	15	8	0,57	9	0,66	5	14

По формуле 49(41)

дим в табл. 45.

$$q = 0.073 \cdot 0.25 + 0.189 \cdot 0.94 = 0.196 \text{ tc/m}.$$

Аналогичным путем вычисляем q для остальных стержней, и результаты сводим в табл: 43.

д) На горизонтальные элементы, нормальные к лучу волны, 5-6, 7-8, 9-10, 11-12, 13-14 и 15-16, определяем горизонтальную составляющую удельной нагрузки от волн по п. 3.9.

Инерционный и скоростной коэффициенты сочетания δ_{xu} и δ_{xc} при $\overline{x} = -0,004$ и 0,096 соответственно равны: $\delta_{xu} = -0,03$ и 0,57, $\delta_{xc} = 1,0$ и 0,66. Коэффициенты θ_x и ε_x определяем по графикам, приведенным на рис. 48 и 49. Результаты вычислений сведены в табл. 44.

Таблица 44

							Значения	
г _ц , м	Ī	θ _x	*x	Р _{ХИ} , КГС/М	Р _{хс} , кгс/м	Р _{хи^бхи, кгс/м}	Р _{хс⁵хс, кгс/м}	Р _х , кгс/м
м						в плоскости 1-17-18 в плоскости 3-19-20		
0	1,0	0,97	0,37	43	116	<u>1</u> 24,5	<u>116</u> 77	<u>115</u> 102
5	0,67	0,54	0,11	24	35	<u>-7</u> 13,7	35 23	<u>34</u> 36,7
10	0,33	0,34	0,04	15	13	<u>-0,5</u> 8,6	<u>13</u> 8,6	12,5 17,2

е) На горизонтальные элементы, расположенные под углом к лучу волны, 5—7, 9—11 и 13—15, определяем горизонтальную составляющую удельной силы волнового давления также по п. 3.9. Поперечные размеры элементов определяем в сечении их вертикальной плоскостью, параллельной плоскости xoz, и получаем:

$$a = \frac{d}{\cos \omega_2} = \frac{0.3}{0.707} = 0.424 \text{ M}, \qquad b = d = 0.3 \text{ M}; \qquad \frac{a}{b} = \frac{0.424}{0.3} = 1.4.$$

По графикам, приведенным на рис. 32(17), по параметру $\frac{a}{b} = 1,4$, $\beta_{\rm H} = 1,21$ и $\beta_{\rm C} = 0,84$. Для каждого элемента считаем значение P_x для трех сечений, т. е. для $\overline{x} = -0,004$; 0,046 и 0,096. Результаты вычислений сво-

Таблица 45

2. M	Р _{жи,} кгс/м	Р _{хс} , кгс/м	мх ^δ	Р _{хи} б _{хи} , кгс/м	^δ xc	Р _{хс^бхс, кгс/м}	Р _х , кгс/м
0	52	97	-0,03 0,28 0,57	1,5 14,6 29,6	1,0 0,91 0,66	97 88 64	95 103 94
5	29	29	0,03 0,28 0,57	—1 8,1 16,5	1,0 0,91 0,66	29 26,4 19,2	28 35 36
10	18	11	0,03 0,28 0,57	0,6 3,1 10,3	1,0 0,91 0,66	11 10 7	12 15 17

Горизонтальная составляющая нагрузки от волн на элементы 6—7, 5—8, 10—11, 5—12, 14—15, 13—16, 18—19 и 17—20 равна нулю, а волновой нагрузкой на элементы, лежащие на дне, можно пренебречь.

3. Определяем вертикальные составляющие нагрузки от волн на каждый элемент блока и плечи этих сил относительно оси 19-20.

а) На горизонтальные элементы 5—6, 7—8, 9—10, 11—12, 13—14 и 15—16, расположенные перпендикулярно лучу волны.

Вертикальные составляющие нагрузок от волн на единицу длины определяем по п. 3.9.

По формуле 62(54)

$$P_{zH} = \frac{1}{2} \cdot 1 \cdot 3, 14^2 \cdot 0, 3^2 \cdot \frac{5}{50} \cdot 1 \cdot \theta_z \cdot 1 = 0,0445 \ \theta_z \ \mathrm{tc/m},$$

а по формуле 63(55)

$$P_{zc} = \frac{2}{3} \cdot 1 \cdot 3.14 \cdot 0.3 \cdot \frac{5^2}{50} \cdot 1^2 \cdot \varepsilon_z \cdot 1 = 0.314 \varepsilon_z \operatorname{Tc/M}.$$

Результаты расчета сводим в табл. 46. Коэффициенты сочетания δ_{zn} и δ_{zc} при $\overline{x} = -0,004$ и 0,096 определяем по рис. 55(23) и 59; имеем: $\delta_{zn} = -1,0$ и -0,83; $\delta_{zc} = 0$ и 0,33 соответственно.

1 UO MU UU 40	Ta	1 6	ли	цa	46
----------------------	----	------------	----	----	----

							Значения			
^г ц, м	τ θ _z		² z	P _{2H} ,	P _{zc} , ĸrc∍M	Р ₂₄ ⁸ 24, кгс.	Р _{2с} б _{2с} , кгс/м	Р ₂ , кгс/м		
						В плоскости 1-17-18 В плоскости 3-19-20				
0	1	0,96	0,31	42,6	97,4	<u>-42,6</u> -35,4	0,0 32,1	<u>42,6</u> <u>3,3</u>		
5	0,67	0,47	0,075	20,9	24	<u> </u>	<u>0,0</u> 8,0	<u>20,9</u> 9,3		
10	0,33	0,19	0,015	8,5	4,7	<u>8,5</u> 7,1	0,0 1,5	<u>8,5</u> 5,6		

б) На горизонтальные элементы 5-7, 9-11 и 13-15, расположенные под углом к лучу волны.

Расчет выполняем также по п. 3.9, при следующих размерах элементов:

$$a = \frac{d}{\cos \omega_2} = 0,424 \text{ m}, \qquad b = d = 0,3 \text{ m}.$$

Коэффициенты сочетаний определяем для значений $\bar{x} = -0,004$; 0,046 и 0,096. При $\frac{b}{a} = \frac{0,3}{0,424} = 0,707$, по рис. 32(17) $\beta_{\mu} = 0,87$, $\beta_{c} = -1,1$. По формулам 62(54) и 63(55)

$$P_{zu} = \frac{1}{2} \cdot 1 \cdot 3, 14^2 \cdot 0, 424^2 \cdot \frac{5}{50} \cdot 1 \cdot \theta_z \cdot 0, 87 = 0,0775\theta_z \text{ tc/m};$$

$$P_{zc} = \frac{2}{3} \cdot 1 \cdot 3, 14 \cdot 0, 424 \cdot \frac{5^2}{50} \cdot 1^2 \cdot \varepsilon_z \cdot 1, 1 = 0, 49 \varepsilon_z \text{ tc/m}.$$

Коэффициенты сочетания при x = 0,046 определяем по рис. 55(23) и 59:

$$\delta_{zH} = -0.96, \qquad \delta_{zC} = 0.09.$$

Результаты вычислений сводим в табл. 47,

Таблица 47

<i>z</i> , M	ī	0 _z	e _z	Р ₂₁₁ , кгс/м	Р _{2С} , кгс/м	^б гн	Р _{<i>z</i>и^δ<i>z</i>п, кгс/м}	δ _z c	Р _{zc^δzc, кгс/м}	Р ₂ , кгс/м
0	1	0,96	0,31	74,4	152	1,0 0,96 0,83	74,4 71,4 61,7	0 0,09 0,33	0 13,7 50,2	74,4 57,7 11,5
5	0,67 ·	0,47	0,075	36,4	36,8	1,0 0,96 0,83		0 0,09 0,33	0 3,3 12,2	36,4 31,6 18
10	0,33	0,19	0,015	14,7	7,4	1,0 0,96 0,83	-14,7 14,1 12,2	0 0,09 0,33	0 0,7 2,44	14,7 13,4 9,8

в) На горизоптальные элементы 5—8, 6—7, 9—12, 10—11, 13—16 и 14—15, расположенные вдоль луча волны.

Расчет вертикальной составляющей ведется как для горизонтальной преграды, расположенной нормально к лучу волны. Результаты расчета сводим в табл. 48.

Таблица 48

<i>z</i> , M	0 _z	^E z	Р _{ги, кгс/м}	Р _{2С} , кгс/м	^б <i>х</i> н	Р _{2н} ⁸ 2п, кгс/м	^õ zc	Р ₂ с ⁸ 2с, кгс/м	Р _z , кг с/м
0	0,96	0,31	42,6	97,4	1,0 0,96 0,83	42,6 41,0 35,4	0 0,09 0,33	0 8,8 32,1	42,6 32,2 -3,3
5	0,47	0,075	20,9	24	1,0 0,96 0,83	20,9 20,1 17,3	0 0,09 0,33	0 2,2 7,9	20,9 17,9 9,4
10	0,19	0,015	8,5	4,7	1,0 0,96 0,83	8,5 8,2 7,1	0 0,09 0,33	0 0,4 1,6	8,5 7,8 5,5

г) На наклонные элементы 2—5, 6—9, 10—13, 14—17, 3—8, 7—12, 11—16, 15—20 и 1—8, 5—12, 9—16, 13—20, 2—7, 6—11, 10—15 и 14—19. Расчет вертикальных составляющих удельной волновой нагрузки

выполняем по п. 3.15, а размеры элементов определяем в сечении их вертикальной плоскостью, парадлельной плоскости zox или zoy.

В обоих случаях размеры элементов составят:

$$b = \frac{d}{\cos \omega_1} = 0,424$$
 м и $a = d = 0,3$ м, а отношение $\frac{b}{a} = \frac{0,424}{0,3} = 1.4$

Превышение взволнованной поверхности η определяем по п. 3.3: для стержня 2—5 (\overline{x} = -0,004) η = -0,58 · h = -2,9 м, для стержня 1—8 (\overline{x} = 0,04) η = -2,75 м, для стержня 8—7 (\overline{x} = 0,096) η = -0,42 · h = -2,1 м. При $\frac{b}{a}$ = 1,4 по рис. 32(17) значения β_{n} = 1,21 и β_{c} = 0,84.

По формулам 62(54) и 63(55)

$$P_{zu} = \frac{1}{2} \cdot 1 \cdot 3, 14 \cdot 0, 3^{\circ} \cdot \frac{5}{50} \cdot 1 \cdot \theta_z \cdot 1, 21 = 0,0538 \ \theta_z \ \text{tc/m},$$
$$P_{zc} = \frac{2}{3} \cdot 1 \cdot 3, 14 \cdot 0, 3 \cdot \frac{5^2}{50} \cdot 1^2 \cdot \varepsilon_z \cdot 0, 84 = 0,264 \ \varepsilon_z \ \text{tc/m}.$$

Результаты расчета сведены в табл. 49, а эпюры нагрузок приведены: горизонтальных на рис. 66, а вертикальных на рис. 67.

									1405	iaga 1 3
<i>2</i> , м	ī	θΖ	₹ _Z	<i>Р₂₁₁,</i> кгс/м	Р _{2С} , кгс/м	^б zн	Р _{2И} б _{2И} , кгс/и	δzc	Р _{2с} б _{2с} , кгс/м	<i>Р_z,</i> кгс/м
-2,9	1,19	1,41	0,64	75,9	169,0	-1,0	75,9	0	0	75,9
2,75	1,18	1,39	0,61	74,8	161,0	0,97	72,5	0,07	11,3	61,2
2,10	1,14	1,27	0,53	68,4	140,0	-0,83		0,33	46,2	10,5
0	1,0	0,96	0,31	51,6	81,8	1,0 0,83	-51,6 -42,8	0 0,33	0 27,0	51,6 15,8
2,5	0,83	0,67	0,15	36,0	39,6	1,0 0,96 0,83	$\begin{array}{ } -36,0 \\ -34,8 \\ -29,9 \end{array}$	0,09 0,33	0 3,6 13,1	36,0 31,0 16,8
5	0,67	0,47	0,075	25,3	19,8	1,0 083	-25,3 -21,0	0 0,33	0 6,5	25,3 14,5
7,5	0,5	0,32	0,035	17,2	9,2	-1,0 0,96 0,83	$\begin{array}{c c} -17,2 \\ -16,5 \\ -14,3 \end{array}$	0 0,09 0,33	0 0,8 0,3	17,2 15,7 11,3
10	0,33	0,19	0,015	10,2	4,0	-1,0 -0,83	-10,2 -8,5	0 0,33	0 1,3	10,2 7,2
12,5	0,17	0,09	0,004	4,8	1,05	1,0 0,96 0,83	$ \begin{array}{r}4,8 \\ -4,6 \\4,0 \end{array} $	0 0,09 0,33	0 0,1 0,35	4,8 4,5 3,6
15	0	0	0	0	0	-	0		0	0

Рис. 66. Горизонтальная волновая нагрузка (к примеру 17) а-на наклонные элементы 2-7, 1-8, 6-11, 5-12, 10-15, 9-16, 14-19, 13-20; б-на горизонтальные элементы 5-7, 9-11, 13-15.

98

д) Далее определяем горизонтальную и вертикальную составляющие суммарной силы волнового давления на блок и опрокидывающий момент этих сил M_0 относительно оси 19—20. Расчет выполняем в табличной форме. За положительное направление опрокидывающего момента принимаем направление по часовой стрелке. Результаты расчетов приведены в табл. 50.

<i>иолици о</i>	Та	блица	50
-----------------	----	-------	----

№ элементов	Σ <i>Q</i> j. τc	Плечо <i>H-2Q</i> , м	$\Sigma Q_j(H-z_Q),$ tcm	Σ <i>Р_{zj}</i> , тсм	Плечо <i>В</i> , м	Σ <i>P_{zj}B</i> , тсм
$ \begin{array}{r} 1-17, 2-18 \\ 3-19, 4-20 \\ 2-5 \\ 6-9 \end{array} $	3,36 3,36	13,75 12,25	46,1 41,2		 5,0 5.0	 0,93 0.55
$10-13 \\ 14-17$	1,57	13,75	21,6	0,070 0,089 0,025 0,027	5,0 5,0 5,0 0,0	0,40 0,45 0,13 0,0
3-8 7-12 11-16 15-20	} 1,33	12,39	16,4	0,080 0,060 0,018	0,0 0,0 0,0	0,0 0,0 0,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,80 0,38 0,24 0,12 0,10	16,5 13,85 11,35 8,83 6,32	13,2 5,26 2,72 1,06 0.63	0,216 0,104 0,206 0,162	-1,6 1,4 3,9 2,8	0,35 0,15 0,80 0,45
14—19, 13—20 5—6 7—8	0,054 0,064 0,58 0,51	3,7 1,2 15 15	0,20 0,08 8,70 7,65	0,05 0,21 0,02	3,0 5,0 0,0	0,15 1,05 0,0
910 1112 1314 1516 57	0,17 0,19 0,06 0,09 0,50	10 10 5 15	1,7 1,9 0,3 0,45 7,5	0,11 0,05 0,,04 0,03 0,165	5,0 0,0 5,0 0,0 3.8	0,55 0,0 0,20 0,0 0,63
9-11	0,17	10	1,7	0,086 0,085	-1,6 -3,9	-0,14 -0,33
13—15	0,074	5	0,37	0,002	-1,4 -3,8 -14	-0,09 -0,13 -0.04
6-7, 5-8		-	_	0,186	3,8 1.6	0,70 0.14
10-11, 9-12			-	0,068	-1,4	0,09
14—15, 13—16			-	0,030 0,04 0,032		-0,14 -0,04
Итого	13,72	13,0	178,72	2,85	-3,15	8,99

Таким образом, действующая на блок максимальная горизонтальная составляющая нагрузки от волн $Q_{\rm M} = 13,72$ тс приложена на расстоянии от дна, равном 13,0 м. Соответствующая ей вертикальная составляющая нагрузки $P_z = 2,85$ тс направлена вниз. Она создает относительно оси 19—20 отрицательный (против часовой стрелки) опрокидывающий момент равный — 9,0 тсм.

Полный опрокидывающий момент от волновой нагрузки относительно оси 19-20

$$M_0 = 178,7 - 9,0 = 169,7$$
 тсм.

Рис. 67. Вертикальная волновая нагрузка на горизонтальные и наклонные элементы блока (к примеру 17; P_z —в кгс/м; ΣP_z —в тс).

4. НАГРУЗКИ ОТ ВЕТРОВЫХ ВОЛН НА БЕРЕГОУКРЕПИТЕЛЬНЫЕ СООРУЖЕНИЯ И СУДОВЫХ ВОЛН НА КРЕПЛЕНИЯ БЕРЕГОВ КАНАЛОВ

Нагрузки от ветровых волн на берегоукрепительные сооружения

4.1. Нагрузки от волн на подводный волнолом при ложбине волны необходимо принимать по эпюрам бокового и взвешивающего волнового давления (рис. 68(26)), при этом величины p, тс/м², должны определяться с учетом уклона дна $(1: m_{\alpha})$ по формулам:

Рис. 68 (26). Эпюры волнового давления на подводный волнолом.

а) при уклоне дна (1:*m*_α) ≪ 0,04, если *z*, м, имеет значения:

 z_1 при $z_1 < z_2$, то $p_1 = \gamma (z_1 + z_1);$ 82(67) при $z_1 \ge z_2$, то $p_1 = p_2$; 83 (68) z_2 , to $p_2 = \gamma h \left(0.015 \frac{\overline{\lambda}}{H} + \right)$ $+0,23\frac{H-z_1}{H}+\gamma z_4; 84 (69)$ $z_3 = H$, to $p_3 = k_B p_2$; 85 (70) б) при уклоне дна (1:*m*_a) > 0,04, если *z*, м, имеет значения: **z**₁, то p₁ определяется по формулам 82 (67) и 83 (68); z_2 , to $p_2 = \gamma (z_2 + z_4);$ 86 (71) 87(72)

где z_1 — расстояние от верха сооружения до расчетного уровня воды, м; z_2 — расстояние от расчетного уровня до подошвы волны, м, принимаемое по относительной величиие из табл. 51(16); k_в — коэффициент, принимаемый по табл. 52(17); z₄ — расстояние от \overline{H}

 $z_3 = H$, to $p_3 = p_3$,

новерхности воды за подводным волноломом до расчетного уровня, м, определяемое по формуле

$$z_4 = k_0(z_1 + z_5) - z_1;$$
 88(73)

 k_0 — коэффициент, принимаемый по табл. 51(16); z_5 — осредненное во времени расстояние от гребня волны перед подводным волноломом до расчетного уровня, м, принимаемос по относительной величине $\frac{z_5}{H}$ из табл. 51(16).

Таблица 51(16)

Относительная высота волны <i>h</i> / <i>H</i>		0,5	0,6	0,7	0,8	0,9	1
Относительное понижение подош- вы волны z_2/H		0,17	0,20	0,22	0,24	0,26	0,28
Относительное превышение гребня волны z ₅ ///		0,16	0,20	0,24	0,28	0,32	0,37
Коэффициент k ₀		0,73	0,69	0,66	0,63	0,60	0,57

Экспериментальные и натурные исследования показали, что подвижки гравитационных волноломов, при недостаточном их весе, всегда направлены в сторону моря. Это свидетельствует о том, что решающим является не лобовос воздействие надвигающейся волны при подходе ее гребня, а давление на береговую грань и подошву волнолома при подходе ложбины волны.

Таблица 52(17)

Пологость волны $\overline{\lambda}/h$	8	10	15	20	25	30	35
Коэффициент k _в	0,73	0,75	0,8	0,85	0,9	0,95	1

Схема волновых нагрузок, приведенная на рис. 68(26), соответствует воздействию волны в тот момент времени, когда подошва волны расположена у передней наклопной грапи волнолома, а через гребень волнолома происходит слив воды, поступившей в заволноломное пространство вместе с гребнем волны. Наибольшее понижение поверхности воды перед волноломом z_2 и одновременное ее повышение z_4 за ним (относительно расчетного спокойного уровня) обуславливают расчетное сочетание волновых давлений.

Если волнолом проектируется на отмелом берегу с песчаными наносами при уклоне подводного склона в 100-метровой полосе, считая от уреза моря, (1 : m_{α}) $\leq 0,04$, нагрузки от волн на такой волнолом определяются по формулам 82 (67), 83 (68), 84 (69) и 85 (70).

Волноломы, сооружаемые на приглубых берегах с галечными наносами, при уклоне подводного склона $(1:m_{\alpha}) > 0,04$, рассчитываются на волновые нагрузки по формулам 82(67), 83(68), 86(71) и 87(72).

Величина z₄ в обоих случаях устанавливается по формуле 88(73), полученной из условия равенства объемов воды, поступающих в пространство между волноломом и берегом и сливающихся через гребень волнолома из этого пространства в течение одного волнового периода.

В случае, когда подводный волнолом располагается в прибойной (третьей волновой) зоне, расчетную высоту волны *h* принимают на глубине воды *H* перед волноломом (рис. 68(26)). При расположении волнолома в приурезовой зоне, в пределах которой поток от разрушенных волн периодически накатывается на берег, величины *h* и *H* следует принимать в створе последнего обрушения волн. При проектировании волноломов, конструкции которых не соответствуют схемам, приведенным на рис. 68 (26), 69, 70, величины, указанные в п. 4.1, должны определяться на основании экспериментальных или теоретических исследований.

Пример 18. Волнолом из гравитационных массивов запроектирован на приглубом участке берега со средним уклоном берегового склона в стометровой полосе, считая от уреза моря, $1: m_{\alpha} = 0,0588$. Подводный склон на участке волнолома сложен размываемыми песчано-галечными грунтами. Волнолом установлен на каменной постели из наброски. Глубина воды у сооружения H=4,5 м. Волнолом затоплен. Расстояние от расчетного уровня воды до гребня волнолома $z_1=0,5$ м. Размеры сечения массива волнолома даны на рис. 69. Класс капитальности волнолома — IV. Расчетная высота волны h=4,0 м имеет на участке возведения вол-

Рис. 69. Эпюры волнового давления на грани подводного волнолома при уклоне дна $1: m_{\alpha} > 0,04$

нолома обеспеченность 4 % в режиме и 5 % в системе. Средняя длина волны $\overline{\lambda}$ = 75 м. Расчетный уровень принят по среднегодовым уровням, обеспеченность его равна 50 %.

Требуется определить нагрузки от волн на грани волнолома.

По табл. 51 (16) при
$$\frac{n}{H} = \frac{4}{4,5} = 0,89$$
 находим:
 $\frac{z_2}{H} = 0,26$, откуда $z_2 = 0,26 \cdot 4,5 = 1,17$ м,
 $\frac{z_5}{H} = 0,32$, откуда $z_5 = 0,32 \cdot 4,5 = 1,44$ м; $k_0 = 0,60$.

Подставив найденные значения величин k_0 и z_5 , а также заданную величину $z_1 = 0.5$ м в формулу 88(73), получим $z_4 = 0.60(0.5 + 1.44) - 0.5 = 0.66$ м.

Руководствуясь изложенным, определяем ординаты волнового давления (рис. 68):

на уровне верха сооружения при $z_1 = 0.5 < z_2 = 1.17$ м $p_1 = 1.03(0.5 + +0.66) = 1.20$ тс/м² — по формуле 82(67);

на уровне подошвы волны при 1: $m_a = 0,0588 > 0,04$ $p_2 = 1,03(1,17 + 0,66) = 1,88$ тс/м² — по формуле 86(71);

на уровне дна и по основанию волнолома

 $p_3 = p_2 = 1,88$ тс/м² — по формуле 87(72).

Полное горизонтальное сдвигающее волновое давление на 1 м длины волнолома равно площади эпюры, построенной по вычисленным ординатам на рис. 69,

$$P_{x} = (H - z_{2}) p_{2} + 0.5 (p_{1} + p_{2}) (z_{2} - z_{1}) =$$

$$= (4,5 - 1,17) \cdot 1.88 + 0.5 (1,20 + 1.88) (1,17 - 0.5) = 6.25 + 1.03 = 7.28 \text{ tc/m}$$

Взвешивающая напрузка на подошву ED

 $P_z = 0.5 \cdot 1.88 \cdot 6.85 = 6.45 \text{ TC/M}.$

Напрузка, пригружающая пребень волнолома

 $P_r = 0.5 \cdot 0.75 \cdot 1.20 = 0.45 \text{ tc/m}.$

Рис. 70. Эпюры волнового давления на грани подводного волнолома при уклоне дна $1: m_{\alpha} \ll 0.04$ (размеры в м, ординаты эпюр в тс/м², силы давления в тс/м).

Пример 19. Подводный волнолом из гравитационных массивов со скошенной передней гранью и размерами, указанными на рис. 70, запроектирован на отмелом берегу (1: $m_{\alpha} \approx 0,035$) на глубине H = 3,5 м. Подводный склон на участке расположения волнолома сложен песчаными отложениями. Волнолом устанавливается на каменной постели. Глубина затопления гребня волнолома $z_1 = 0,6$ м. Волнолом отнесен к гидротехническим сооружениям IV класса капитальности, поэтому согласно приложению 1 расчетная высота волны для него h = 2,5 м принята с обеспеченностью 4% в режиме и 5% в системе. Средняя длина волны $\overline{\lambda}$, соответствующая этой высоте, равна 35 м. Расчетный уровень моря для рассматриваемого волнолома вычислен по средним годовым уровням с обеспеченностью 50%. Требуется определить волновые нагрузки на грани волнолома. При $\frac{h}{H} = \frac{2.5}{3.5} = 0,71$ находим по табл. 51 (16):

$$k_0 = 0,66;$$
 $\frac{z_2}{H} = 0,22,$ откуда $z_2 = 0,22$ $H = 0,22 \cdot 3,5 = 0,77$ м;
 $\frac{z_5}{H} = 0,24,$ откуда $z_5 = 0,24 \cdot 3,5 = 0,84$ м.

По формуле 88(73) $z_4 = 0,66(0,60+0,84) - 0,60 = 0,35$ м.

Используя найденные и заданные величины, определяем волиовое давление:

на уровне подошвы волны при $1: m_{\alpha} = 0.035 < 0.04$

$$v_2 = 1,03 \cdot 2,5 \left(0,015 \cdot \frac{35}{3,5} + 0,23 \frac{3,5 - 0,60}{3,5} \right) + 1,03 \cdot 0,35 = 1,24 \text{ тс/м}^2 - \text{по}$$
 формуле 84 (69);

на уровне гребня волнолома при $z_1 = 0,60 < z_2 = 0,77$ м

$$p_1 = 1,03 (0,6+0,35) = 0,98$$
 тс/м² — по формуле 82(67);

на уровне подшвы сооружения при $\frac{\overline{\lambda}}{h} = \frac{35}{2,5} = 14$ и соответственно по табл. 52 (17) $k_{\rm B} = 0,79$

$$p_3 = 0.79 \cdot 1.24 = 0.98 \text{ tc/m}^2$$
.

Полное горизонтальное давление на 1 м длины подводного волнолома

 $P_{x} = 0.5 (p_{1} + p_{2}) (z_{2} - z_{1}) + 0.5 (p_{2} + p_{3}) (H - z_{2}) = 0.5 (0.02 + 1.04) + 0.17 + 0.5 (1.04 + 0.02) + 0.72 - 0.22 = 0.02$

 $=0,5(0,98+1,24) \cdot 0,17+0,5(1,24+0,98) \cdot 2,73=3,22 \text{ tc/m}.$

Взвешивающая волновая нагрузка на подошву ЕД

 $P_z = 0.5 \cdot p_3 \cdot 5.0 = 0.5 \cdot 0.98 \cdot 5.0 = 2.45 \text{ tc/m}.$

Нагрузка, припружающая гребень волнолома,

 $P_{\Gamma} = 0.5 \cdot p_1 \cdot 0.6 = 0.5 \cdot 0.98 \cdot 0.6 = 0.29 \text{ TC/M}.$

4.2. Максимальную донную скорость воды v_{MR} , м/с, перед наклонной гранью подводного волнолома необходимо определять по формуле

$$v_{\rm MA} = \frac{n_{\rm A}\pi h}{\sqrt{\frac{\pi}{g}\,\overline{\lambda} \sin\frac{4\pi}{\overline{\lambda}}H}},\qquad 89(74)$$

где n_д — коэффициент, принимаемый по табл. 53(18).

Таблица 53(18)

Относительная длина волны $\overline{\lambda}/H$.	5	10	15	20	25
Коэффициент n _д	0,67	1,22	1,74	2,13	2,23

Примечание. Допускаемые значения неразмывающих донных скоростей перед наклонной гранью подводного волнолома должны приниматься согласно требованиям п. 2.9 настоящей главы.

4.3. Нагрузки ог разбивающихся (разрушившихся) воли на вертикальную волнозащитную стену (при отсутствии засыпки групта со стороны берега) необходимо принимать по эпюрам бокового и взвешивающего волнового давлений (рис. 71 (27)), при этом величины p, тс/ m^2 , и $z_{\rm rp}$, м, должны определяться в зависимости от месторасположения сооружения:

а) при расположении сооружения в створе последнего обрушения прибойных вюлн (рис. 71(27), *a*) — по формулам:

$$p_{00} = \gamma h \left(0,033 \, \frac{\overline{\lambda}}{H} + 0,75 \right);$$
 90 (75)

$$\boldsymbol{z}_{\rm rp} = \frac{p_{\rm o6}}{\gamma}; \qquad \qquad 91(76)$$

Рис. 71 (27). Эпюры волнового давления на вертикальную волнозащитную стену.

б) при расположении сооружения в приурезовой зоне (рис. 71 (27), б)
 — по формулам:

$$p_{yp} = \left(1 - 0.3 \frac{l_{o0}}{L_{o0}}\right) p_{o0}; \qquad 92 (77)$$

$$\boldsymbol{z}_{\Gamma p} = \frac{p_{yp}}{\gamma}; \qquad \qquad 93 \ (78)$$

в) при расположении сооружения на берегу за линией уреза в пределах наката волн (рис. 71 (27), в) — по формулам:

$$p_{6p} = 0.7 \left(1 - \frac{l_{yp}}{L_{HK}} \right) p_{o6};$$
 94(79)

$$\boldsymbol{z}_{\rm rp} = \frac{p_{\rm 6p}}{\gamma}, \qquad \qquad 95 \,(80)$$

- где z_{гр} превышение гребня волны над расчетным уровнем в створе волнозащитной стены, м;
 - Lo6 расстояние от створа последнего обрушения волн до линии уреза (приурезовая зона), м;

106 — расстояние от створа последнего обрушения волн до сооружения, м;

- ¹⁰⁰ расстояние от линии уреза до сооружения, м; ¹ур расстояние от линии уреза до границы наката на берег разрушившихся волн (при отсутствии сооружения), м, определяемое по формуле L_{нк}

$$L_{\rm HK} = h_{\rm H1\%} \ m_{\alpha}, \qquad 96 \ (81)$$

h_{н1%} - высота наката воли на берег, определяемая по требованиям п. 2.14 настоящей главы, м.

Примечания. 1. Если расстояние от верха сооружения до расчетного уровня воды z₁ <0,3h м, то величины волнового давления, определенные по формулам 90(75), 92(77) и 94(79), необходимо умножать на коэффициент ксв, принимаемый по табл. 54(19).

2. Нагрузки от прибойных волн на волнозащитные стены при расположении их в прибойной зоне следует определять согласно требованиям п. 2.12 настоящей главы.

Таблица 54 (19)

Расстояние от верха сооружения до расчетного уровня воды z ₁ , м	+0,3 <i>h</i>	0,0	0,3h	— 0,65 <i>h</i>	
Коэффициент к _{сн}	0,95	0,85	0,8	0,5	

Берегозащитные стены часто подвергаются ударам разрушающихся волн. Разрушение волн может происходить непосредственно на стене или на некотором удалении от нее. В последнем случае на стену воздействует поток, образовавшийся от разрушенной волны.

Общее давление, возникающее при ударе обрушающейся волны о вертикальную стену, состоит из гидростатического и гидродинамического давлений. Гидродинамическая часть давления изменяется в зависимости от угла подхода волны к вертикальной грани стены. При фронтальном расположении грани относительно луча волны гидродинамическое давление достигает максимального значения и составляет приблизительно половину полной величины давления. Формулы 90(75), 92(77) и 94(79), приведенные в пункте 4.3, предназначены для вычисления интенсивности давления при ударе о вертикальную грань стены обрушающихся волн или прибойного потока, подходящих к стене фронтально.

Очевидно, что в зоне прибойного потока величина давления будет тем больше, чем больше скорость потока. Эта скорость постепенно убывает от максимума в точке последнего обрушения волны до пулевого значения на верхней границе наката волны. На основании исследований принято, что интенсивность давления волн на вертикальную грань стены также убывает — от своего максимума роб в точке последнего обрушения волны до нуля на верхней границе наката.

Принято также, что убывание интенсивности волнового давления в зоне прибойного потока происходит по линейному закону. Внутри зоны прибойного потока выделены два участка, разграниченных линией уреза. На первом участке изменение величины давления опнсывается формулой 92(77), в которой значение множителя $(1-0,3\frac{L_{06}}{L_{06}})$ изменяется от едини-
цы в точке последнего обрушения волны до 0,7 на урезе моря. На втором участке, между урезом моря и верхней границей наката волн, интенсивность давления соответственно уменьшается от 0,7 p_{00} до нуля.

Максимальные ординаты взвешивающего давления, приложенного к подошве стены, равны, как показано на рис. 71 (27), боковому давлению

Рис. 72-(28). Эпюры волнового давления на вертикальную волнозащитную стену при откате волны.

у внешнего ребра сооружения; дальше взвешивающее давление уменьшается до нулевого значения у внутреннего ребра, изменяясь линейно.

4.4. Нагрузки от разрушившихся волн на вертикальную волнозащитную стену (с засыпкой грунта со стороны берега) при откате волны необходимо принимать по эпюрам бокового и взвешивающего волнового

Рис. 73 (29). Эпюра давления волн на волнозащитную стену криволинейного очертания.

давления (рис. 72 (28)), при этом величина $p_{\text{от}}$, тс/м², должна определяться по формуле

$$p_{\rm or} = \gamma (0.75h + z_{\rm or}),$$
 97(82)

где 2от — понижение поверхности воды от расчетного уровня перед вертикальной стеной при откате воли, м, принимаемое равным:

при наличии перед стеной пляжа шириной 3/г м, и более — zor=0;

при ширине пляжа менее $3h - z_{0T} = 0.25h$, м.

В данном случае термин «нагрузки от разрушившихся волн» применен условно. Здесь имеется в виду давление воды, попавшей в застенную засыпку в результате воздействия волн расчетной высоты *h*. По формуле 97 (82) максимальное давление на 1 м² задней грани стены на уровне, определяемом величиной $z_{\text{от}}$, принято эквивалентным гидростатическому давлению слоя воды толщиной $0.75h + z_{\text{от}}$. Понижение поверхности воды перед стеной принимается равным нулю при наличии пляжа. Этим учитывается разгружающее противодавление грунтовой воды, имеющейся в толще пляжа перед стеной.

4.5. Волновое давление от разрушившихся воли на криволинейный участок волнозащитной стены $p_{\rm R}$, тс/м², (рис. 73(29)) необходимо определять по формуле

$$p_{\mathbf{K}} = 0.5p (1 + \cos^2 \beta_{\mathbf{K}}),$$
 98 (83)

- где *р* волновое давление, тс/м², на вертикальную волнозащитную стену, определяемое согласно требованиям п. 4.3 настоящей главы;
 - βк— угол между вертикальк) и касательной к криволинейному участку волнозащитной стены, град.

Рис. 74. Эпюры бокового и взвешивающего давлений разрушившихся воли на волноотбойную стену (размеры в м, ординаты эпюр в тс/м²).

Пример 20. Определить величины волновых давлений на переднюю грань и подошву берегозащитной стены, запроектированной на морском берегу, сложенном песчано-галечными наносами.

Стена расположена по линин последнего обрушения расчетной волны на глубине $H_{\rm km}$ = 5,0 м. Она отнесена к четвертому классу капитальности. Расчетная высота волны h = =3,9 м при обеспеченности 5% в системе и 4% в режиме. Расчетная длина волны $\overline{\lambda}$ = 52 м. Расчетный уровень моря — 0,25 м определен по средним годовым уровням; его обеспеченность 50%. Исходя из недопустимости перелива воды через гре-

бень волноотбойной стены, его отметка принята равной 7,0 м. Подошва стены заложена на глубине H = 8,0 м.

По формуле 90(75) волновое давление

$$p_{00} = 1,03 \cdot 3,9 \left(0,033 \frac{52}{5} + 0,75 \right) = 4,4 \text{ tc/m}^2$$

Возвышение гребня волны определено по формуле 91 (76)

$$z_{\rm rp} = \frac{4,4}{1,03} = 4,3$$
 M.

На рис. 74 построены эпюры давлений на переднюю вертикальную грань и подошву стены

Пример 21. Определить давление воды на заднюю грань берегозащитной стены; ее гребень расположен на высоте 3,5 м относительно расчетного уровия моря. Исходные условия для проектируемой стены аналогичны заданным к примеру 20.

Заданная отметка гребня стены меньше определенной в примере 20 величины $z_4 = 4,4$ м; следовательно, возможен перелив воды.

Заданная ширина пляжа перед степой, равная 4 м, меньше $3h=3\times$

Рис, 75. Эпюры бокового и взвешивающего давлений на стену при откате волны (размеры в м, ординаты эпюр в тс/м³).

 \times 3,9=11,7 м, поэтому в соответствии с п. 4.4 принимаем $z_{or} = 0.25h \approx \approx 1.0$ м.

По формуле 97 (82) находим:

 $p_{0T} = 1,03(0,75 \cdot 3,9 + 1,0) = 4,1 \text{ rc/m}^2.$

В соответствии с требованиями п. 4.4 давление p_{or} приложено к задней грани стены па уровне (рис. 72(28)) $z_{or} = 1,0$ м ниже расчетного уровня моря; ниже — оно принимается постоянным и равным 4,1 тс/м², а выше — оно уменьшается до нулевого значения на уровне, соответствующем

Рис. 76. Энюры горизонтальных составляющих волнового давления на криволинейную поверхность и взвешивающего давления на подошву волноотбойной стены (ординаты эпюр в тс/м²).

 $0,75h = 0,75 \cdot 3,9 \approx 3$ м. Эпюра давления, соответствующая рассматриваемому случаю, представлена на рис. 75.

Пример 22. Определить равнодействующую волнового давления на криволинейную грань стены (рис. 76) с целью установления устойчивости стены в условиях строительства при отсутствии засыпки за стеной. Исходные данные приняты по примеру 20.

Стена расположена приблизительно на середние расстояния (рис. 71 (27),6) $L_{o6} = 25$ м между урезом моря и линией последнего обрушения расчетной волны h = 3,9 м. Принимая p_{o6} по линии последнего обрушения равным 4,4 тс/м² (см. расчет в примере 20), находим по формуле 92(77) интенсивность давления в створе расположения стены, т. е. при $l_{o6} = = 12,5$ м:

$$l_{yp} = (1 - 0.3 \cdot 0.5) \cdot 4.4 = 3.7 \text{ tc/m}^3.$$

Криволинейная поверхность стены разбита на 10 небольших отрезков, в пределах каждого из которых кривая заменена прямой. Затем определены углы наклона прямых отрезков относительно вертикали и соответствующие этим углам интенсивности волнового давления p_{κ} (по формуле 98(83)), действующие по нормали к выделенным прямым отрезкам. Углы наклона (β_{κ} , град) и интенсивности давлений (p, тс/м²) соответственно для отрезков равны:

Очевидно, что горизонтальная составляющая общего давления, приложенного к любому отрезку, выделенному на криволинейном профиле стены, равна произведению интенсивности пормального давления p_{κ} на вертикальную проекцию отрезка. Вычисленные таким образом горизонтальные составляющие H_i на 1 м длины стены имеют следующие значения (тс/м):

$H_{0-1} = 3,7 \cdot 0,5 = 1,8$	$H_{5-6} = 3,1 \cdot 0,65 = 2,0$
$H_{1-2} = 3,5 \cdot 0,65 = 2,3$	$H_{6-7} = 3,6 \cdot 0,85 = 3,1$
$H_{2-3} = 2,6 \cdot 0,55 = 1,4$	$H_{7-8} = 3,7 \cdot 0,65 = 2,4$
$H_{3-4} = 2,2 \cdot 0,60 = 1,3$	$H_{8-9} = 3,7 \cdot 0,45 = 1,7$
$H_{4-5} = 2,6 \cdot 0,85 = 2,2$	$H_{9-10} = 3,7 \cdot 0,25 = 0,9.$

Полная боковая (сдвигающая) волновая нагрузка на криволинейную поверхность стены

$$P_x = \sum_{0}^{10} H_i = 19,1 \text{ tc/m}.$$

Вертикальные составляющие давления V_i , направленные вниз, установлены по соотношению $V_i = H_i \, \text{tg } \beta_i$, тс/м:

$$V_{0-1} = 0$$

$$V_{1-2} = 2,3 \cdot \lg 19^{\circ} = 2,3 \cdot 0,344 = 0,8$$

$$V_{2-3} = 1,4 \cdot \lg 51^{\circ} = 1,4 \cdot 1,235 = 1,7$$

$$V_{3-4} = 1,3 \cdot \lg 64^{\circ} = 1,3 \cdot 2,050 = 2,7$$

$$V_{4-5} = 2,2 \cdot \lg 49^{\circ} = 2,2 \cdot 1,150 = 2,5$$

$$V_{5-6} = 2,0 \cdot \lg 33,5^{\circ} = 2,0 \cdot 0,662 = 1,3$$

$$V_{6-7} = 3,1 \cdot \lg 13^{\circ} = 3,1 \cdot 0,231 = 0,7$$

$$V_{7-8} = 0$$

$$V_{8-9} = 0$$

$$V_{8-10} = 0.$$

Полная вертикальная волновая нагрузка на криволинейную поверхность стен, направленная вниз,

$$\sum_{0}^{10} V_i = 9,7 \text{ tc/m}.$$

110

Эпюра взвешивающего давления на подошву стены условно принята треугольной (рис. 76), с максимальной ординатой у внешнего ребра подошвы, равной интенсивности бокового давления $p_{0-1}=3,7$ тс/м². Таким образом, здесь сохраняется принцип построения эпюры взвешивающего давления, принятый для стен с вертикальными гранями.

4.6. Нагрузки от воли на буну необходимо принимать по эпюрам бокового и взвешивающего волнового давления (рис. 77 (30)), при этом величины p, тс/², с учетом подхода воли к сооружению под углом $\alpha_{\rm B}$ следует определять по формуле

 $v = \frac{3}{4} k_{\rm H} \gamma h \left(1 + \cos^2 \alpha_{\rm B}\right),$

99(84)

где к_н — коэффициент, принимаемый по табл. 55 (20).

Нагрузки от волн действуют на все грани буны, причем интенсивность их непрерывно изменяется. Экспериментальные и натурные исследования показали. что в наиболее невыгодных условиях воздействия волновых нагрузок находится головной массив буны. Для расчета устойчивости головного массива определяется критическая комбинация вол-

Рис. 77 (30). Эпюры волнового давления на буну S-длина буны; а-ширина буны.

новых нагрузок, которая включает:

нагрузку, действующую на внешнюю боковую грань;

одновременно возникающее давление на противоположной (теневой) боковой грани;

взвешивающее давление на подошву буны;

вертикальную составляющую волновой нагрузки, действующей на наклонную торцевую грань.

Наимено- вание граней буны	При зна-	Коэффициент $k_{\rm H}$ при значении $S/\overline{\lambda}$						
	a ctg а м	0,03 и менее	0,05	0,1	0,2 и более			
Внешняя		1	0,75	0,65	0,6			
Теневая	0 0,5 1,2 2,5	0,7 0,45 0,18 0	0,65 0,45 0,22 0	0,6 0,45 0,30 0	0,55 0,45 0,35 0			

7	Ъб.	лица	55	(20)
_				

Приведенная формула 99 (84) представляет собой произведение трех величии:

1,5γh — давление разбитой волны при фронтальном ударе о вертикальную стену;

 $0,5(1 + \cos^2 \alpha_{\rm B})$ — выражение, учитывающее косой подход воли;

 $\vec{k}_{
m H}'$ — коэффициент, учитывающий отставание по фазе и перавномерность распределения давления на гранях буны.

Шероховатость граней бун в формуле 99(84), применяющейся для буп гравитационного типа (рис. 77(30)), не учитывается.

Волновое давление действует одновременно на обе продольные грани буны; однако, теневая прань оказывается при этом менее нагруженной при косом подходе волны, что обусловливает сдвигающую нагрузку $P_{\rm xB}-P_{\rm xT}$, перпендикулярную к оси буны. Различия в давлениях на внешнюю и теневую грани учитываются эмпирическим коэффициентом $k_{\rm H}$, причем одновременно учитывается неравномерность распределения давления по длине буны и отставание по фазе давления на теневую грань по сравнению с внешней.

Взвешивающее давление у ребер подошвы буны принимается равным соответствующим значениям давления у дна по боковым граням.

При трапецеидальном поперечном сечении бун влияние наклона граней на величину давления надлежит учитывать введением в формулу 99(84) соответствующей поправки. При этом формула 99(84) приобретает вид:

$$p = \frac{3}{4} k_{\rm H} \gamma h \left(1 + \cos^2 \alpha_{\rm B} \cdot \cos^2 \beta_{\rm B} \right), \qquad 100$$

здесь _{вб} — угол наклона боковой грани к вертикали.

Следует подчеркнуть, что на конечный результат расчета устойчнвости головного массива буны большое влияние оказывает учет наклона скошенной передней (торцевой) грани массива.

При определении волновых нагрузок на головной массив буны необходимо учитывать расположение массива относительно линии последнего обрушения расчетной волны высотой h. В том случае, когда головной массив выходит за линию обрушения в третью волновую (прибойную) зону с глубинами $H > H_{\rm NR}$, необходимо иметь в виду, что расчетная высота волны здесь может быть больше высоты h, определенной по линии последнего обрушения. Приближенно для этого случая расчетная высота волны h может быть принята равной глубине H по кромке передней грани массива, но не большей высоты прибойной волны требуемой обеспеченности ($h_{\rm пр}$) у этой кромки.

Пример 23. Определить волновые нагрузки на головной массив буны, проектируемой на приглубом участке берега, сложенного песчаногалечными отложениями.

Согласно приложению 1 расчетная обеспеченность высоты волны принята равной 5% в системе и 4% в режиме. Таким образом, расчетная высота волны на участке расположения головного массива h=4,4 м и соответствующая ей длина $\overline{\lambda}=75$ м. Угол между продольной осью буны и фронтом расчетной волны (рис. 77(30)) $\alpha_{\rm B}=70^\circ$. Отметка расчетного уровия моря —0,25 имеет обеспеченность 50% по среднегодовым уровиям.

Вид и размеры головного массива показаны на рис. 78. Расчетная длина массива S = 5,25 м. Наклоп боковых граней относительно вертикали составляет $\beta_{\rm b} = 7^{\circ}$; так как соз 7° близок к единице, то в данном расчете наклон боковых граней не учитываем.

Волновое давление на 1 м² боковой внешней грани головного массива буны определяем по формуле 99(84). После подстановки

значений h = 4,4 м, $k_{\rm H} \approx 0,7$ (по табл. 55(20)) при $\frac{S}{\overline{\lambda}} = \frac{5,25}{75} = 0,07$, $\cos^2 \alpha_{\rm B} = \cos^2 70^\circ = 0,117$ находим $\sigma_{\rm B} = \frac{3}{4} \cdot 0,7 \cdot 1,03 \cdot 4,4 (1 + 0,117) = 2,65$ тс/м².

Площади боковых граней головного массива в рассматриваемом случае одинаковы и равны

$$\omega = 0.5 (0.5 + 3.5) \cdot 5.25 = 10.5 \text{ m}^2.$$

Полная волновая нагрузка на боковую внешнюю грань головного массива

$$P_{xB} = p_B \omega = 2,65 \cdot 10,5 = 27,8$$
 TC.

Рис. 78. Общий вид головного массива буны. Каменная постель не показана (размеры в м).

Давление волн на боковую теневую грань головного массива определяем также по формуле 99 (84) при $\frac{S}{\overline{\lambda}} = 0.07$ и $a \cdot \operatorname{ctg} \alpha_{\mathrm{b}} = 1.23$ м; соответственно этому $k_{\mathrm{H}} = 0.25$, а

$$p_{\rm T} = \frac{3}{4} \cdot 0.25 \cdot 1.03 \cdot 4.4 \ (1 + 0.117) = 0.95 \ {\rm tc/m^2}.$$

Полная волновая нагрузка на боковую теневую прань головного массива

$$P_{x\tau} = p_{\tau}\omega = 0.95 \cdot 10.5 = 10 \text{ tc}.$$

Полная сдвигающая нагрузка на головной массив буны

$$P_x = P_{xB} - P_{xT} = 27.8 - 10 = 17.8$$
 TC.

Волновое давление на наклонную торцевую грань головного массива определяем по формуле 99(84), пренебрегая косиной подхода волн. При этом угол $\alpha_{\rm B}$ заменяем в этой формуле углом наклона торцевой грани к вертикали $\beta_{\rm Top} = 60^{\circ}16'$, и по экспериментальным данным принимаем $k_{\rm H} = 0.8$, учитывая обтекание торца буны при ударе волны и затопленное положение гребня головного массива. Подставляя значения γ , h, $k_{\rm H}$ и $\cos^2\beta_{\rm Top}$, находим

$$p_{\text{top}} = \frac{3}{4} \cdot 0.8 \cdot 1.03 \cdot 4.4 (1 + 0.246) = 3.39 \text{ tc/m}^3.$$

Проекция площади торцевой грани на вертикальную плоскость

$$\omega_{\text{rop}} = \left(\frac{2,5+3,37}{2}\right) \cdot 3,0 = 8,8 \cdot M^3.$$

Вертикальная составляющая волновой нагрузки на наклонную торцевую грань, направленная вниз, равна

 $p_{\text{top}}\omega_{\text{top}}$ tg $\beta_{\text{top}} = 3,39 \cdot 8,8 \cdot 1,75 = 52,3$ tc.

При определении взвешивающего волнового давления на подошву массива ординаты эпюры в угловых точках подошвы принимаются равными соответствующим ординатам боковой нагрузки.

Среднее взвешивающее волновое давление на 1 м² по подошве вычисляем как среднее арифметическое из значений в угловых точках

$$p_{\pi} = \frac{2p_{\tau op} + p_{B} + p_{\tau}}{4} = \frac{2 \cdot 3.39 + 2.65 + 0.95}{4} = 2.58 \text{ tc/m}^{3}.$$

Площадь подошвы головного массива

 $\omega_{\rm m} = 3,37 \cdot 5,25 = 17,7 \,{\rm M}^3.$

Полная взвешивающая напрузка, приложенная к подошве головного массива буны,

$$P_z = p_{\rm n}\omega_{\rm n} = 2,58 \cdot 17,7 = 45,6$$
 rc.

В рассматриваемом примере получилось, что суммарная вертикальная составляющая волновой нагрузки на головной массив буны пригружает его, причем пригружающая сила равна

$$p_{\text{TOD}}\omega_{\text{TOD}}$$
 tg $\beta_{\text{TOD}} - P_z = 52,3 - 45,6 = 6,7$ TC.

Нагрузки от судовых волн на крепления берегов каналов

4.7. Высоту судовой волны h_c, м, необходимо определять по формуле

$$h_{\rm c} = 2.5 \, \sqrt{\frac{\delta T}{L}} \, \frac{v_{\rm cK}^2}{g} e^{-\frac{g n_{\rm K}}{4 v_{\rm cK}^2}}, \qquad 101(85)$$

где H_{κ} — глубина канада, м; L и T — соответственно длина и осадка судна, м; δ — коэф-фициент полноты водоизмещения судна; $v_{o\kappa}$ — допускаемая по эксплуатационным требованиям скорость судна, м/с. •

Максимальную скорость движения судна, во избежание значительного увеличения сопротивления, надлежит определять по условию

$$v_{\rm c} < 0.9 v_{\rm K},$$
 102

где v_к — критическая скорость, м/с, определяемая по формуле

$$v_{\rm k} = {\rm Fr}_{\rm k} \sqrt{{\rm g}\frac{{\rm Q}}{B}}.$$
 103

где Fr_{κ} — число Фруда, определяемое по табл. 56; Ω — площадь живого сечения канала; *В* — ширина канала по зеркалу воды; *k* — коэффициент стеснения живого сечения канала, ла, равный отношению площади погруженной части судна по мидель-шпангоуту к площади живого сечения канала.

Таблица 56

k	0,10 0	15 0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,80
Fr _K	0,63 0,	53 0,47	0,41	0,36	0,32	0,28	0,23	0,20	0,17	0,14	0,11	0,09	0,07	0,05

Для двустороннего движения в канале критическая скорость расходящихся однотипных судов определяется по формуле 103, в которой коэффициент стеснения k увеличивается в 2 раза.

При отношении $\frac{H_{\kappa}}{T} \ge 1,5$ высоту судовой волны необходимо уточнить по формуле

$$h_{\rm c} = \frac{1.6v_{\rm cK}^3}{g\left(1-k\right)^{2.5}} \sqrt{\frac{\overline{\delta T}}{L}};$$
 104

для дальнейших расчетов принимается наибольшее значение из полученных по формулам 101 (85) и 104.

4.8. Высоту наката судовой волны $h_{\rm Hc}$, м, на откос (рис. 79(31),*a*) следует определять по формуле

$$h_{\rm Hc} = \beta_{\rm K0} \frac{0.5h_{\rm c} + 0.1m_{\alpha}}{1 - 0.05m_{\alpha}}, \qquad 105(86)$$

где β_{κ_0} — коэффициент, принимаемый для откосов с креплением бетонными или железобетонными плитами равным 1,4, каменным мощением — 1 и каменной наброской — 0,8.

Верхняя граница крепления берегов канала отсчитывается от наивысшего судоходного уровня воды и возвышается на величину:

для вертикальных и крутонаклонных стен 0,9hc,

для откосов $h_{\rm Hc}$, но не менее 0,9 м.

Нижняя граница крепления берегов канала отсчитывается от наинизшего судоходного уровня воды на глубину

Рис. 80. График для определения коэффициента β.

ß

где β — коэффициент, определяемый по графику, приведенному на рис. 80.

Следует принимать *z*_к≥2 м.

4.9. Нагрузки от судовых волн на крепления берегов каналов должны приниматься по эпюрам волнового давления (рис. 79(31)), при этом величины p, тс/м², необходимо определять по формулам:

а) при накате волн на откос (рис. 79(31), a), если z, м, имеет значения

$$r_1 = -h_{\rm HC},$$
 to $p_1 = 0;$ 107(87)

$$z_2 = 0,$$
 to $p_2 = 1,34\gamma h_c;$ 108(88)

$$z_3 = 1.5h_c \sqrt{1+m_a^2}$$
, to $p_3 = 0.5\gamma h_c$; 109(89)

б) при откате волн с откоса (рис. $79(31), \delta$), если z, м, имеет значения

$$p_1 = \Delta h_{\phi}, \quad \text{to} \quad p_1 = 0; \quad 110(90)$$

$$p_2 = 0.5h_c,$$
 to $p_2 = \gamma (0.5h_c - \Delta h_{\oplus});$ 111(91)

$$z_3 = z_c,$$
 to $p_3 = p_2;$ 112(92)

в) при ложбине волны у вертикальной стены (рис. 79(31), в), если z, м, имеет значения

$$z_1 = \Delta h_{\phi},$$
 to $p_1 = 0;$ 113(93)

$$z_2 = 0.5h_{\rm c},$$
 to $p_2 = \gamma (0.5h_{\rm c} - \Delta h_{\rm p});$ 114(94)

$$z_3 = H_{\rm K},$$
 to $p_3 = p_2;$ 115(95)

$$z_{\rm H} = H_{\rm K} + l_{\rm III},$$
 to $p_4 = 0,$ 116(96)

где $z_{\rm k}$ — глубина низа крепления при откосном профиле, м; $l_{\rm III}$ — глубина забивки шпунта, м; $\Delta h_{\rm IV}$ — понижение уровня воды за креплением берега канала вследствие фильтра-ции, м, принимаемое равным; $0.25h_{\rm c}$ — для крепления протяженностью по откосу от расчетного уровня менее 4 м, с водонепроницаемым упором; $0.2h_{\rm c}$ — то же, протяженностью более 4 м, с упором в виде каменной призмы; $0.1h_{\rm c}$ — для вертикальной шпунтовой стенки.

Пример 24. Задан канал III класса капитальности с размерами: B = 35 м, $H_{\kappa} = 3$ м, $m_{\alpha} = 1,5$. Наибольшее расчетное судно имеет размеры: $B_0 = 10 \text{ M}, L = 60 \text{ M}, T = 1.8 \text{ M}, \delta = 0.85.$

Требуется определить границы крепления откосов канала и нагрузки от судовых волн на крепление откосов в виде бетонных плит.

 Определяем по формуле 103 критическую скорость движения расчетного судна:

при
$$k = \frac{10 \cdot 1,8}{\frac{1}{2} \cdot 3(35 + 26)} = 0,187$$

по графику, приведенному на рис. 80, $Fr_{\kappa} = 0.5$;

$$v_{\rm g} = 0.50 \sqrt{9.81 \frac{\frac{1}{2} \cdot 3(35+26)}{50}} = 2.6 \, {\rm m/c}.$$

2. Максимальная скорость расчетного судна по формуле 102 $v_c < 0.9 \cdot v_\kappa = 0.9 \cdot 2.6 < 2.3$ м/с.

3. По формуле 101(85) высота судовой волны

$$h_{\rm c} = 2.5 \cdot \sqrt{\frac{0.85 \cdot 1.8}{60}} \cdot \frac{2.3^2}{9.81} e^{-\frac{9.81 \cdot 3}{4 \cdot 2.3^2}} = 0.05 \text{ M}.$$

Поскольку $\frac{H_{\kappa}}{T} = 1,67 > 1,5$, уточняем высоту судовой волны по формуле 104

$$h_{\rm c} = \frac{1.6 \cdot 2.3^2}{9.81 \left(1 - 0.187\right)^{2.5}} \sqrt{\frac{0.85 \cdot 1.8}{60}} = 0.23 \text{ M}.$$

Для дальнейших расчетов принимаем $h_c = 0.23$ м.

4. По формуле 105(86) высота наката судовой волны на откос канала

$$h_{\rm HC} = 1,4 \, \frac{0.5 \cdot 0.23 + 0.1 \cdot 1.5}{1 - 0.05 \cdot 1.5} = 0.4 \, \, {\rm m}.$$

5. Верхнюю границу крепления откоса принимаем на высоте 0,9 м от спокойного уровня воды согласно пояснениям к п. 4.8. Нижнюю границу крепления откоса определяем по формуле 106, найдя предварительно по графику, приведенному на рис. 80, $\beta = 0,19$:

$$z_{\rm k} \ge 1.8 \cdot 0.19 \, \frac{91.5}{35} = 0.9$$
 м; принимаем $z_{\rm k} = 2$ м.

6. Определяем ординаты эпюр волнового давления на крепление откоса канала, вычисляя значения z и p по формулам 107(87)—112(92): a) при накате волн на откос:

> $z_1 = -0.4$ м и $p_1 = 0,$ $z_2 = 0$ и $p_2 = 1.34 \cdot 1 \cdot 0.23 = 0.31$ тс/м², $z_3 = 1.5 \cdot 0.24 \sqrt{1+1.5^2} = 0.65$ м и $p_3 = 0.5 \cdot 1 \cdot 0.23 = 0.12$ тс/м²;

б) при откате волн с откоса:

 $z_1 = 0.25 \cdot 0.23 = 0.06$ м н $p_1 = 0$, $z_2 = 0.5 \cdot 0.23 = 0.11$ м н $p_2 = 1$ (0.5 $\cdot 0.23 - 0.06$) = 0.06 TC/M², $z_3 = 2$ м н $p_3 = 0.06$ TC/M².

5. НАГРУЗКИ ОТ СУДОВ (ПЛАВУЧИХ ОБЪЕКТОВ) НА ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ

5.1. При расчете гидротехнических сооружений на нагрузки от судов (плавучих объектов) необходимо определять:

нагрузки от ветра, течения и волн на плавучие объекты, согласно требованиям пп. 5.2—5.4 настоящей главы;

нагрузки от навала на причальное сооружение пришвартованного судна при действии ветра и течения, согласно требованиям п. 5.7 настоящей главы;

нагрузки от навала судна при его подходе к причальному сооружению, согласно требованиям пп. 5.8—5.10 настоящей главы;

нагрузки от натяжения швартовов при действии на судно ветра и течения, согласно требованиям пп. 5.11 и 5.12 настоящей главы.

Примечание. При определении навала пришвартованного судна на причальное сооружение необходимо учитывать нагрузки от воздействия волн, элементы которых превышают допустимые значения согласно требованиям Указаний на проектирование гидротехнических сооружений, подверженных волновым воздействиям или других нормативных документов, утвержденных или согласованных Госстроем СССР; если элементы воли менее допускаемых, нагрузки от них не должны учитываться.

Качка пришвартованного судна у причала — нежелательное явление. угрожающее повреждением судна и причала. Необходимо ограничивать элементы волн при стоянке судна у причала таким образом, чтобы нагрузки, вызванные качкой судна, не превысили значений, определяемых прочностью причала или борта судна с учетом характеристик отбойных устройств.

Если валовое время простоев, вызванных волнением, не превышает величин, определяемых Указаниями по компоновке морских портов с учетом нормативного коэффициента занятости причалов согласно Нормам технологического проектирования морских портов, то возникающие нагрузки от судов не должны учитываться, так как в этом случае стоянка судов у причала при интенсивном волнении исключается.

Невыполнение указанного условия влечет за собой необходимость учета в расчетах причальных сооружений нагрузок от судов, обусловленных волнением. В этом случае на основании технико-экономического сопоставления вариантов рекомендуется осуществлять следующие мероприятия:

ограничить время эксплуатации причала сверх нормативных простоев:

изменить компоновку причального сооружения или предусмотреть оградительные сооружения с целью уменьшения воздействия волн на пришвартованное судно;

принять такую конструкцию сооружения, которая могла бы воспринимать соответствующие нагрузки.

Для простоты выполнения расчетов и их унификации способы определения характеристик навала пришвартованного судна на причал под действием волнения даны в пояснениях к п. 5.7, а величин возникающих нагрузок — в пояснениях к п. 5.9.

Нагрузки от ветра, течения и волн на плавучие объекты

5.2. Поперечную R_x , тс, и продольную R_y , тс, составляющие нагрузки от действия ветра на плавучие объекты следует определять по формулам:

для судов и плавучих причалов с ошвартованными судами

$$R_x = 7.5 \cdot 10^{-5} F_x W_x^2 \chi; \qquad 117(97)$$

$$R_y = 5.0 \cdot 10^{-5} F_y W_y^2 \chi; \qquad 118(98)$$

для плавучих доков

$$R_x = 8.1 \cdot 10^{-5} F_x W_x^2; \qquad 119(99)$$

$$R_{\rm v} = 8.1 \cdot 10^{-5} F_{\rm v} W_{\rm v}^2, \qquad 120(100)$$

где F_x и F_y — соответственно боковая и глобовая надводные площади парусности

(силуэтов) плавучих объектов, м²; W_x и W_y – соответственно поперечная и продольная составляющие скорости ветра обеспеченностью 2% за навигационный период, м/с;

χ — коэффициент, принимаемый по табл. 57(21), в которой L_c — наибольший горизонтальный размер поперечного или продольного силуэтов надводной части плавучего объекта.

Примечание. Площади парусности следует определять с учетом площадей экранирующих преград, расположенных с наветренной стороны.

)

Наибольший размер силуэта плавучего объекта L _с , м	до 25	50	100	200 и более
Коэффициент χ	1,00	0,80	0 ,6 5	0,50

Расчетное значение скорости ветра необходимо определять по многолетним данным метеорологических наблюдений с учетом местных условий (влияния рельефа местности, промышленно-городской застройки и проч.) и в соответствии с требованиями, приведенными в пп. 9 и 10 приложения 1. При вычислении величины ветрового воздействия на пришвартованное судно (плавучий объект) необходимо учитывать пульсации ветра и рассматривать такое сочетание скорости и направлений ветра, отклоняющихся до ±30° от оси причала или нормали к ней, которое приводит к наибольшей величине нагрузки R_x или R_y .

Для причалов на внутренних водных путях величину скорости ветра или значение скоростного напора допускается определять по главе СНиП на нагрузки и воздействия в зависимости от ветрового районирования территории СССР. При этом скорость ветра W для подстановки в формулы -117(97) и 118(98) рассчитывается по формуле

$$W = 4 \sqrt{q_0}, \qquad 121$$

где q0 — скоростной напор.

Наличие экранирующих преград с наветренной стороны пришвартованного судна, которое

Рис. 81. Схема ветрового экранирования судна.

может привести к существенному уменьшению нагрузок от воздействия ветра на судно, учитывается путем уменьшения площади парусности пришвартованного судна на величину приведенной экранирующей площади F_{2} , м², определяемой в соответствии с рис. 81 по формуле

$$F_{\mathfrak{g}} = (h_{\mathfrak{K}} + \mathfrak{a}_{\mathfrak{g}}H) L, \qquad 122$$

^где h_к — возвышение кордона причала над наивысшим уровнем воды, м;

аз --- коэффициент, учитывающий степень экранирующего действия преграды определяемый по выражению

$$a_{\mathfrak{z}} = 0.5 \, \frac{H_{\mathfrak{z}}}{I_{\mathfrak{z}}} \frac{L_{\mathfrak{z}}}{L_{\mathfrak{z}}}, \tag{123}$$

- где, в свою очередь, H₉ среднее значение высоты экранирующих препятствий, м; l_э - среднее расстояние экранирующих препятствий от кор
 - дона; при $l_9 < H_9$ принимают $l_9 = H_9$, м; L_c то же, что в табл. 57(21), т. е. наибольшая длина $L_{\rm H6}$ или ширина В судна; если длина причала L_п < L_c, то в расчет вместо L_{c} вводится $L_{п}$, м;
 - L_э длина или сумма длин экранирующих преград, располо-
 - женных в пределах $L < L_c$, м; L = длина зоны экранирования, м, принимаемая по условию:

если
$$L_{\rm c} < L_{\rm II}$$
, $L = L_{\rm c}$;

если $L_{\rm c} > L_{\rm n}$, $L = L_n$

5.3. Поперечную R_x, тс, и продольную R_y, тс, составляющие нагрузки от действия течения на плавучий объект следует определять по формулам:

$$R_x = 0.06F_x' u_x^2; 124(101)$$

$$R_{y} = 0.06 F_{y}' u_{y}^{2}, \qquad 125(102)$$

где F_x' и F_y' – соответственно боковая и лобовая подводные площади парусности плавучих объектов, м²;

их и иу - поперечная и продольная составляющие скорости течения обеспеченностью 2% за навигационный период, м/с.

При определении нагрузок R_x и R_y от воздействия течения на пришвартованное судно необходимо учитывать гидрологические характеристики акватории в виде распределения поля скоростей в плане и по глубине, и возможное искажение этого скоростного поля, вызванное другими сооружениями порта. Поэтому, если величины скоростей течения получены по материалам изысканий, выполненных до возведения этих сооружений, их следует уточнять гидрологическими расчетами.

Рис. 82 (32) График значений коэффициента k.

5.4. Амплитуды поперечной A_x , тс, и продольной A_y , тс, горизонтальной нагрузки от действия волн на плавучий док или плавучий причал с ошвартованными судами следует определять по формулам:

$$A_x = k\gamma h F_x';$$
 126(103)

$$A_{\rm y} = k \gamma h F_{\rm y}', \qquad 127(104)$$

k — коэффициент, принимаемый по рис. 82(32), на котором T — осадка плавучего объекта, м; при учете трехмерности волнения полученные значения k допускается уменьшать по данным лабораторных или патурных исследований;

h — высота волн обеспеченностью 5% в системе, м; $F_{x'}$ и $F_{y'}$ — обозначения те же, что и в п. 5.3 настоящей главы.

Примечание. Период изменения волновой нагрузки следует принимать равным среднему периоду волн.

5.5. При расчете гидротехнических сооружений на действие нагрузок, передающихся от плавучих объектов на палы, корневые части причалов и анкерные опоры (для принятого количества, калибра и длины связей, величины натяжения связей в первоначальном состоянии, веса и места закрепления подвесных грузов) необходимо определять:

горизонтальные и вертикальные нагрузки на сооружения и анкерные опоры;

наибольшие усилия в связях;

перемещения плавучих объектов.

Примечание. На морях с приливами и отливами опредсление усилий в элементах раскрепления следует производить при самом высоком и самом низком уровнях воды.

Нагрузки, действующие на плавучие объекты (плавучие причалы, доки, волноломы, буровые установки и т. п.), передаются с помощью якорных связей (цепей, тросов) на анкерные опоры (гравитационные железобетонные или бетонные якоря, свайные анкеры и т. п.), а также на береговые сооружения (корневые части плавучих причалов, стационарные причальные сооружения и палы).

Схему раскрепления плавучего объекта необходимо принимать по возможности простой с меньшим числом якорных связей. Должно обеспечиваться равномерное распределение нагрузок между связями, расположенными по одному и тому же борту; при невозможности этого следует считать, что нагрузки воспринимаются только двумя наиболее натянутыми связями данного борта. Конструкция системы заякорения должна позволять изменять в процессе эксплуатации величины первоначального (при отсутствии внешних сил) натяжения связей.

5.6. Нагрузки на анкерные опоры, усилия в связях и перемещения плавучих объектов необходимо определять с учетом динамики действия волн, при этом соотношения периодов свободных и вынужденных колебаний плавучих объектов должны приниматься из условия недопущения резонансных явлений.

При динамических расчетах плавучих заякоренных сооружений производится:

определение свободных колебаний сооружения (на тихой воде);

поверка динамической работы сооружения на резонанс;

определение вынужденных колебаний сооружения;

определение нагрузок на анкерные опоры, усилий в связях и др. элементах конструкции с учетом динамического характера воздействия;

другие расчеты в зависимости от конструктивных особенностей, технологических и др. условий.

Пример 25. Требуется определить нагрузки от ветра, течения и волн на плавучий док грузоподъемностью 8500 тс. Исходные данные: длина по стапель-палубе $L_c=140$ м; осадка дока с судном T=4,2 м; боковая надводная площадь парусности $F_x=2300$ м²; боковая подводная площадь парусности $F'_x=590$ м²; расчетная скорость ветра $W_x=40,0$ м/с; скорость течения $u_x=0,5$ м/с; высота волн h=1,2 м; средняя длина волн $\overline{\lambda}=35,0$ м; средний период волн $\overline{\tau}=4,74$ с.

Поперечная нагрузка от действия ветра по формуле 119(99)

 $R_x = 8,1 \cdot 10^{-5} \cdot 2300 \cdot 40,0^2 = 298,1$ rc.

Поперечная нагрузка от течения по формуле 124(101)

$$R_x = 0.06 \cdot 590 \cdot 0.5^2 = 8.8$$
 rc.

Амплитуда A_x поперечной горизонтальной нагрузки от действия волн определяется по формуле 126(103), в которой по графику, приведенному на рис. 82(32), при $\frac{T}{\overline{\lambda}} = \frac{4.2}{35.0} = 0,12$ k = 0,70; тогда

 $A_x = 0.70 \cdot 1.00 \cdot 1.2 \cdot 590 = 496.0$ rc.

Пример 26. Требуется определить нагрузки от ветра, течения и волн на плавучий причал с ошвартованным судном водоизмещением 8000 тс. Исходные данные: длина судна $L_c = 130$ м; осадка судна T = 5,6 м; боковая надводная площадь парусности $F_x = 1800$ м²; боковая подводная площадь парусности $F'_x = 910$ м²; расчетная скорость ветра $W_x = 25,0$ м/с; скорость течения $u_x = 0,8$ м/с; высота волн h = 0,8 м; средняя длина волн $\lambda = 25,0$ м; средний период волн $\tau = 4,0$ с.

Поперечная нагрузка R_x от действия ветра вычисляется по формуле 117 (97). Площадь парусности причала полностью экранируется ошвартованным судном и поэтому в расчете не учитывается. Коэффициент χ принимается по табл. 57 (21) путем интерполяции; в данном примере при $L_c = 130 \text{ м} - \chi = 0,60$. Тогда.

$$R_x = 7,5 \cdot 10^{-5} \cdot 1800 \cdot 25,0^2 \cdot 0,60 = 50,7$$
 rc.

Поперечная нагрузка от течения по формуле 124 (101)

$$R_x = 0.06 \cdot 910 \cdot 0.8^2 = 34.9$$
 rc.

Амплитуда A_x поперечной горизонтальной нагрузки от действия волн определяется по формуле 126(103), в которой по графику, приведенному на рис. 82(32), при $\frac{T}{5} = \frac{5.6}{25.0} = 0.224 \ k = 0.50$; тогда

 $A_x = k\gamma hF_x' = 0.50 \cdot 1.00 \cdot 0.9 \cdot 910 = 409.5$ rc.

Нагрузки от навала пришвартованного судна на сооружение

5.7. Нагрузку от навала пришвартованного судна под действием ветра и течения q_и, тс/м, для причального сооружения с непрерывным в пределах прямолинейной части борта судна причальным фронтом следует определять по формуле

$$q_{\rm H}=1,1\frac{R_x}{L_{\rm K}},\qquad 1$$

где R_x — поперечная нагрузка от суммарного действия ветра и гечения, тс, определяемая согласно требованиям пп. 5.2 и 5.3 настоящей главы;

L_к — длина участка контакта судна с сооружением, м, принимаемая в зависимости от соотношения длины причала L_п, м, и длины прямолинейной части борта судна (или обноса) l₆, м, соответственно:

при
$$L_{\pi} > l_{6}$$
 $L_{\kappa} = l_{6}$;
при $L_{\pi} < l_{6}$ $L_{\kappa} = L_{\pi}$.

Примечание. Для причального фронта, образованного несколькими опорами или палами, распределение нагрузки от пришвартованного судна следует принимать только на те из них, которые располагаются в пределах прямолинейной части борта судна.

Рис. 83. График для определения параметра $\frac{\eta_0}{\overline{A}}$: сплошные линии—швартовы из синтетических и растительных материалов; пунктирные—стальные швартовы.

Для причального фронта, образованного несколькими сооружениями в виде короткого причала в сочетании с палами или в виде отдельно стоящих палов различной жесткости, нагрузку от навала H_x , тс, на каждое (*i*-тое) сооружение определяется по формуле

$$H_x = 1,1k_i \frac{R_x}{\sum_{i=1}^{n} k_i},$$
129

где *i* — порядковый номер сооружения в пределах длины участка контакта, начиная от его края (от *i* = 1 до *i* = *n*);

k₁ — коэффициент жесткости причального сооружения в горизонтальном поперечном направлении, тс/м, с учетом отбойных устройств.

Деформацию отбойных устройств (и причального сооружения) Δ_z , м, возникающую при навале пришвартованного судна на причал под действием волн, допускается определять по формуле

$$\Delta_z = \overline{A} \left(j + \frac{\eta_0}{\overline{A}} \right), \tag{130}$$

где

А – среднее значение амплитуды поперечно-горизонтальных колебаний точки контакта борта судна с отбойными устройствами, м, определяемое по формуле

$$\vec{A} = x \, \frac{\vec{h}}{2}; \qquad 131$$

$$\mathbf{x} = \mathbf{x}_{\psi} \left(\mathbf{x}_{\eta} + 2\pi \frac{l_{\theta}}{\overline{\lambda}} \mathbf{x}_{\theta} \mathbf{k}_{\theta} \right); \qquad 132$$

 η_0 — смещение центра поперечно-горизонтальных колебаний, м; относительная величина смещения $\frac{\eta_0}{\overline{A}}$ определяется по рис. 83 в зависимости от параметров $\frac{\sqrt[4]{v\sigma}}{\widetilde{\omega}}$ и *P*,

$$P = \pi \frac{\mu}{\kappa} \frac{\varepsilon}{\overline{\lambda}}; \qquad 133$$

Рис. 84. График для определения значения µ.

$$= \gamma_{A} \gamma_{c} \frac{1}{\frac{1}{k_{m}} + \left(\frac{l_{\varphi}}{\rho_{\varphi}}\right)^{2} + \left(\frac{l_{\theta}}{\rho_{\theta}}\right)^{2}};$$

- km коэффициент присоединенной массы воды при качке судна, определяемый по табл. 58;
- ус коэффициент демпфирования подводной частью причального сооружения, принимаемый равным 0,75, или 0,85, или 1,0 соответственно для сооружений, указанных в абзацах первом, или втором, или третьем и четвертом табл. 61(23);
- v_д = 1 для случая качки судна;

γ

- *l_φ*, *l_θ* абсцисса и ордината точки приложения нагрузки от навала судна относительно его центра тяжести, отсчитываемые по продольной и вертикальной главным центральным осям соответственно, м;
- ρ_φ, ρ_θ радиусы инерции судна относительно вертикальной и горизонтальной главных центральных осей, м;

Таблица	58
---------	----

134

Относи- тельная		Значения коэффициента k _m при параметре Во ³ /q, равном									
глубина <i>Т Н</i>	0,5	1,0	2,0	3,0	4,0	5,0	6,0				
0,00 0,20 0,40 0,60 0,80 0,90 0,95	1,90 2,08 2,35 2,63 2,86 3,13 3,33	1,67 1,82 2,04 2,27 2,44 2,67 2,78	1,39 1,48 1,64 1,82 2,04 2,22 2,27	1,23 1,32 1,43 1,60 1,82 1,96 2,04	1,15 1,22 1,35 1,55 1,75 1,89 1,96	1,15 1,21 1,33 1,54 1,74 1,87 1,92	1,15 1,21 1,33 1,54 1,72 1,85 1,90				

В — наибольшая ширина расчетного судна.

 $\sigma = \frac{2\pi}{\tau}$ - средняя частота воздействующих на судно волн, 1/с, где $\overline{\tau}$ - сред-

ний в системе период волн, с;

$$=\sqrt{\frac{gC_0}{D}n}$$
 – приведенная част

ω

п – приведенная частота поперечно-горизонтальных колебаний судна
 на отбойных устройствах, 1/с, где Со – коэффициент жесткости отбойного устройства, определяемый для начального, линейного,

участка характеристики "сила—деформация", тс/м; n— число отбойных устройств, одновременно деформируемых при навале;

- D водоизмещение судна при рассматриваемой загрузке;
- и є параметры, определяемые по рис. 84 и 85 соответственно; х_ф — коэффициент, учитывающий нефронтальный подход волн к диаметральной плоскости судна, определяется по рис. 86, где L_{пп} — длина судна между перпендикулярами, м, ψ — угол подхода волн, отсчитываемый от продольной оси судна;
- х_η и х_в редукционные коэффициенты поперечно-горизонтальной и бортовой качки соответственно, определяются по рис. 87;

 k_{θ} — коэффициент динамичности бортовой качки; допускается определять 2π

но рис. 88, где $\omega_{\theta} = \frac{2\pi}{\tau_{\theta}}$ — собственная частота бортовой качки, 1/сек,

τ_θ — собственный ее период, с;

- \overline{h} и $\overline{\lambda}$ соответственно средние в системе значения высот и длин волн, воздействующих на судно, м;
 - і коэффициент перехода от средних значений к малообеспеченным для амилитуд поперечно-горизоптальных колебаний точки контакта борта судна с отбойными устройствами, распределенными по закону Релея; определяется по табл. 59; в расчетном случае рекомендуется рассматривать навал однопроцентной обеспеченности.

Таблица 59

Обеспе- ченность в %	1	3	5	10	20	50
j	2,42	2,11	1,95	1,71	1,43	0,94

Нагрузка, передаваемая причальному сооружению через отбойные устройства, расположенные в средней части участка контакта судна с сооружением $L_{\rm k}$, определяется в предположении навала судна лагом, когда все *n* отбойных устройств в пределах прямолинейной части борта деформируются равномерно.

Нагрузка, передаваемая причальному сооружению через отбойные устройства, расположенные на концах участка контакта, определяется в предположении неравномерного навала (под углом, при наличии рыскания), когда n = 1.

При уточнении величин гидромеханических коэффициентов (редукционных, присоединенных масс и проч.) или необходимости расчета элементов продольной и вертикальной качки пришвартованного судна, допускается пользоваться указаниями «Методики расчета качки не имеющих хода водоизмещающих кораблей и судов».

Нагрузки от навала судна при подходе к сооружению

5.8. Кинетическую энергию навала судна *E*_н, тс · м, при подходе его к причальному сооружению следует определять по формуле.

$$E_{\rm H} = \gamma \, \frac{D_{\rm c} v^2}{2g}, \qquad 135(106)$$

где D_c — расчетное водоизмещение судна, тс; v — нормальная (к поверхности сооружения) составляющая скорости подхода судна, м/с, принимаемая по табл. 60(22); v — коэффициент, принимаемый по табл. 61(23); при этом для судов, швартующихся в балласте или порожнем, табличные значения v необходимо уменьшать на 15%.

Рис. 86. График для определения значения редукционного коэффициента х_ψ.

Таблица 60(22)

Суда	Нормальная составляющая скорости подхода судна <i>v</i> , м/с, с расчетным водоизмещением D _c в тыс. тс									
Суда	до 2	5	10	20	40	100	200 и более			
Морские Речные	0,22 0,20	0,15 0,15	0,13 0,10	0,11	0,10	0,09	0,08			

Таблица 61(23)

Конструкции причальных сооружений	Коэффициент » для судов		
	морских	речных	
1	2	3	
Набережные из обыкновенных или фасонных массивов, массивов-гигантов, оболочек боль- шого диаметра и набережные уголкового типа; больверки, набережные на свайных опорах с передним шпунтом	0,50	0,30	
шпунтом	0,55	0,40	
Пирсы эстакадного или мостового типа, палы причальные	0, 6 5 1,60	0,45	

Навал судна на причал в процессе выполнения швартовных операций происходит по схеме, приведенной на рис. 89, и соответствует одному из расчетных случаев, указанных на рис. 90. Даже в случае подхода лагом одновременного навала на все отбойные устройства, перекрываемые бортом судна, обычно не происходит. При значениях углов ф между диаметральной плоскостью судна и линией кордона всего в несколько градусов (и даже долей градуса) навал судна происходит практически на одно из отбойных устройств оконечностью (рис. 90, *a*) или прямолинейной частью борта на крайнее отбойное устройство причала (пала), когда его длина короче судна (рис. 90, *б*). Поэтому в качестве основного расчетного случая следует рассматривать энергию навала, соответствующую деформации одного отбойного устройства.

Значения этой энергии определяются по формуле 135(106) в зависимости от величин скорости *v* и коэффициента v. Величины этих параметров устанавливаются в зависимости от условий эксплуатации причального сооружения.

При нормальных условиях эксплуатации в соответствии со сложившимися в СССР положениями морской практики швартовные операции производятся практически при отсутствии волнения или при его интенсивности, не превышающей 1—2 баллов, силе ветра не более 6—7 баллов и скорости течения менее 0,6 м/с. При этом судам водоизмещением более 5 тыс. тс придается необходимое буксирное обеспечение. Для этих условий эксплуатации значения скорости *v*, нормированные в зависимости от водоизмещения судна в момент швартовки, приведены в табл. 60(22). Для причальных сооружений морских портов, расположенных на речных акваториях, величину этой скорости рекомендуется принимать по табл. 60(22) с коэффициентом 0,8.

При необходимости расчета причального сооружения на подход судна в более сложных гидрометеорологических условиях — при больших значениях элементов ветровых волн, скорости ветра и течения, что требует соответствующего технико-экономического обоснования — величины скорости контакта борта судна с отбоями должны устанавливаться специальным расчетом. В этом случае целесообразно увеличивать значение нормативных скоростей v, приведенных в табл. 60 (22), на величину Δv , вызванную качкой судна под действием волн, а мощность и тяговое усилие буксиров-кантовщиков, обеспечивающих швартовные операции, увеличивать пропорционально квадрату относительного увеличения скорости ветра (течения) по сравнению с допускаемыми в нормальных условиях. Для упрощения расчетов рекомендуется по конструктивным и техникоэкономическим соображениям увеличивать нормативные значения энергии навала, полученные по формуле 136 (106), и соответствующие им величины нагрузок на причал, а допускаемые величины скорости подхода

Рис. 89. Схема навала судна на причал 1-линия кордона; 2-отбойное устройство; 3-(штриховка) деформация отбойного устройства; ЦТ-центр тяжети судна; ф-угол швартовки; в-угол крена.

Рис. 90. Расчетные случан навала судна на причал.

судна $v_{\text{доп}}$, м/с, определять по формуле 143(109). При выполнении этих расчетов должно выполняться условие

$$v_{\rm Aon} = v + \Delta v, \qquad 136$$

$$\Delta v = \overline{A} \tau, \qquad 137$$

где все обозначения те же, что в пояснениях к п. 5.7.

Величины коэффициента энергии навала v, приведенные в табл. 61 (23), рекомендуется принимать для расчета навалов по схеме на рис. 90, а и уточнять по формуле 134 при расчете навалов по схеме на рис. 90, б и в; при этом принимается: v=0,8 для случая швартовки судна; v_c , l_{φ} ; l_{θ} ; ρ_{φ} ; ρ_{θ} — то же, что в пояснениях к п. 5.7; k_m — коэффициент, учитывающий влияние присоединенных масс жидкости, определяется для случая швартовки судна по табл. 62.

Величины l_{φ} и l_{θ} определяются, исходя из условий навала судна на причальное сооружение: значение l_{φ} определяется с учетом смещения центра тяжести судна относительно плоскости мидель-шпангоута x_{π} , а

Тип судна	Значения коэффициента k _m для швартующегося судна в зависимости от отношения осадки судна при рассматриваемой нагрузке T (м) и глубины у причала H (м), равных							
	0,0	0,20	0,40	0,60	0,80	0,90		
Грузопассажирские	1,55	1,58	1,72	2,07	2,70	2,93		
Сухогрузные общего назначения	$\frac{1,75}{1,45}$	<u>1,80</u> 1,48	$\frac{1,97}{1,59}$	$\frac{2,46}{1,88}$	$\frac{3,32}{2,40}$	$\frac{3,62}{2,57}$		
Танкеры и балкеры	$\frac{1,74}{1,42}$	1,78 1,45	$\frac{1,96}{1,55}$	$\frac{2,45}{1,82}$	$\frac{3,29}{2,30}$	$\frac{3,59}{2,47}$		
Рыбопромысловые	$\frac{1,55}{1,45}$	$\frac{1,58}{1,48}$	<u>1,72</u> 1,59	$\frac{2,07}{1,88}$	$\frac{2,70}{2,40}$	$\frac{2,93}{2,57}$		

Примечание. Значения k_m , приведенные в числителе, соответствуют судам в полном грузу; в знаменателе—судам в балласте или порожнем.

значение l_{θ} — с учетом ординаты центра тяжести судна z_{π} и высоты подвески отбойных устройств l_0 (рис. 89).

При навале судна на причал по схеме, приведенной на рис. 90, *а*, в качестве абсциссы *l*_{\varphi} можно принимать расстояние в горизонтальной плоскости от центра тяжести судна до точки максимальной кривизны ватер-

Рис. 91. Вероятность превышения (обеспеченность) нормативных величин скорости подхода и смещения миделя судна относительно средины причала (v_i в долях от нормативной величины v; $\Delta \bigotimes$ в долях от длины судна между перпендикулярами L_{nn}).

линии на уровне отбойных устройств; его можно определить по теоретическим чертежам судна или при помощи табл. 63. В случае навала по схеме, приведенной на рис. 90, б, абсцисса l_{φ} определяется как расстояние в горизонтальной плоскости между центром тяжести судна с учетом его возможного смещения относительно средины причала и ближайшим крайним отбоем на причале или пале. Наихудшим вариантом будет случай столь незначительных величин l_{φ} , когда можно принять $l_{\varphi}/\rho_{\varphi} \approx 0$. Однако такой случай может быть расчетным для головного разворотного пала и невозможен для пала у корня сооружения (см. рис. 90, в).

При расчете морских причальных сооружений I и II классов капитальности или в других случаях повышенных требований к несущей способности сооружения величина энергии навала $E_{\rm H}$ должна уточняться специальным расчетом, учитывающим вероятность превышения норма-

Коэффициент полно- ты водоизмещения б	0,50	0,60	0,70	0,80	0,90
Относительная вели- чина абсциссы $\frac{I_{\varphi}^{*}}{L_{\pi\pi}}$	0,19	0,22	0,28	0,36	0,43

Примечание. l_{ϕ}^* — расстояние от точки контакта до миделевого сечения судна (рис. 89).

тивных величин v и v. Вероятность превышения (обеспеченность) p нормативных величин скорости подхода v принимается по графику, приведенному на рис. 91, в соответствии с интегральной функцией распределения величины v_i/v . При определении величины коэффициента v обеспеченность расчетного случая навала принимается:

— для значений v, приведенных в табл. 61 (23) или определяемых по формуле 134 для навала по схеме на рис. 90, *a*, — равной 0,1 (10%);

 для значений v, определяемых по формуле 134 для навалов по схемам, приведенным на рис. 90, б и 90, в, - равной обеспеченности величины смещения миделя судна относительно средины причала (технологической площадки) ∆ ∞, м, в соответствии с интегральной функцией распределе ния 400 безразмерной величины по графику, приведенному на рис. 91.

Вероятность реализации (обеспеченность) случая навала судна со значением энергии $E_{\rm H}$, определяемой по формуле 135(106), принимается равной произведению вероятностей (обеспеченностей), принятых в расчете значений скорости подхода и

1-по нервому абзацу; 2-по второму -; 3-по третьему -; 4-по четвертому абзацу табл. 61(23) для морских судов.

коэффициента навала. Повторяемость этих случаев должна устанавливаться технико-экономическим расчетом в соответствии с расчетной интенсивностью подхода судов различных дедвейтных прупп, сроком службы сооружения, периодами между капитальными ремонтами и т. д.

В тех случаях, когда величины параметров v и v принимаются для морских судов по табл. 60(22) и 61(23) соответственно, при определении величины энергии навала E_{π} можно пользоваться графиками, приведенными на рис. 92; если рассматривается подход судна в балласте или порожнем, снятые с графика величины энергии необходимо — соответственно указаниям, приведенным в п. 5.8, — умножить на понижающий коэффициент, равный 0,85.

5.9. Поперечную горизонтальную нагрузку H_x , тс, от навала судна при подходе к сооружению необходимо определять для заданного значения энергии навала судна $E_{\rm H}$, тс · м, по графикам, полученным согласно схеме рис. 93 (33), следуя по направлению штриховой линии со стрелжами.

Рис. 93 (33). Схема построения графиков дефор-

маций отбойного устройства (и причального сооружения) Δz

а-от энергии E_н; б-от нагрузки H_r.

Суммарная энергия деформации E должна включать энергию деформации отбойных устройств E_1 и энергию деформации причального сооружения E_2 ; при $E_1 \ge$ $\ge 10E_2$ велнчину E_2 допускается не учитывать.

Энертию деформации причального сооружения E_2 , тс.м, следует определять по формуле

 $E_2 = \frac{1}{2} \cdot \frac{H_x^3}{k}$, 138(107)

где k — коэффициент жесткости причального сооружения в горизонтальном поперечном направлении, тс/м.

Продольная нагрузка H_{y} , тс, от навала судна при подходе к сооружению должна определяться по формуле

$$H_y = fH_x,$$
 139(108)

где f — коэффициент трения, принимаемый в зависимости от материала лицевой поверхности отбойного устройства: при поверхности из бетона или резины f=0,5; при деревянной поверхности — f=0,4.

Для определения величин нагрузок H_x и H_y , тс, предварительно назначается тип отбойных устройств и схема их размещения на причале. Затем производится построение графика зависимости суммарного значения энергии деформации отбойно-

Рис. 94. Схема построения номограммы для определения поперечной составляющей нагрузки от навала судна на причал H_x в зависимости от энергин навала $E_{\rm H}$, характеристик отбойных устройств и жесткости причального сооружения

1-зависимость деформации отбойного устройства от приложенной нагрузки; 2-зависимость энергии деформации отбойного устройства от его, деформации (а) или величным приложенной нагрузки (б); 3-кривые суммарного значения энергии деформации отбойного устройства и причального сооружения при различных значениях коэффициента жесткости конструкции причала k.

го устройства, причального сооружения (а при необходимости — и борта судна) от величин приложенных нагрузок. Величину энергии деформации отбоев E_1 , тс · м, определяют по графикам их характеристик, а значение энергии деформации сооружения (или сооружения и корпуса судна) E_2 , тс · м, рассчитывают в зависимости от их жесткости k, тс/м.

Тогда суммарное значение энергии деформации системы «отбойсудно-причал»

$$E = E_1 + E_2,$$
 140

а деформация этой системы

$$\Delta_z = \Delta_0 + \Delta_c, \qquad 141$$

- где Δ₀ деформация отбоїного устройства, определяемая по графикам их характеристик, м;
 - Дс деформация причального сооружения, м, определяемая по выражению

$$\Delta_{\rm c} = \frac{H_x}{k}.$$
 142

Рис. 95. График зависимости энергии деформации сооружения E_2 от приложенной нагрузки H_x и жесткости причала k.

Используя зависимости 141 и 142, строят графики по схемам, приведенным на рис. 93 (33) или 94, а и б. Располагая вычисленными значениями энергии навала судна, по этим графикам определяют соответствующее значение нагрузки H_x , тс.

В случае применения отбойных устройств с резиновыми амортизаторами для причальных сооружений, жесткость которых при действии горизонтальной нагрузки велика, величиной энергии деформации причального сооружения E_2 , тс.м, можно пренебречь, если ее значение не превышает 10% от энергии деформации отбойных устройств E_1 , тс.м, под той же нагрузкой. Это обстоятельство вызвано тем, что графики характеристик отбойных устройств строятся обычно с погрешностью до 10%, и приведенные рекомендации учитывают наихудший расчетный случай. Тогда отпадает необходимость построения указанных графиков, и определение величины нагрузки от навала судна производится непосредственно по графикам характеристик отбойных устройств, на деформацию которых затрачивается вся энергия навала судна.

Для облегчения расчетов при определении величины энергии деформации сооружения E_2 , тс.м, можно воспользоваться графиком, приведенным на рис. 95. Сведения вопомогательного характера для определения ориентировочной величины коэффициента жесткости некоторых типов конструкций причальных сооружений приведены в табл. 64.

При однорядной развеске резиновых отбойных устройств на лицевой поверхности причала энергия навала судна затрачивается, обычно, иа деформацию одного отбойного устройства. Поэтому, если размещение отбойных устройств на причале соответствует рекомендациям, приведенным в табл. 65, то построение графиков по схеме, приведенной на рис. 94, производится для одного отбойного устройства. Если же отбойные устройства расположены на причале с шагом меньше, чем по табл. 65, или применена многорядная развеска отбойных устройств, то распределение энергии навала между этими элементами должно приниматься в соответствии с неравномерностью деформации отбойных устройств, вызванной кривизной ватерлинии и развалом

Таблица 65

Типы отбойных устройств										
	Цили	ндрические (ди	ужным	Импортные	Импортные					
ДР	Д300	Д400 и 2Д400	Д800 и 4Д400	Д1000	Д1200	и типа SA	и типа /			
	Шаг отбойных устройств S, м									
_	4,5	5,0	6,0-8,0	8,010	9,0-11	8,0-12	8,0—12			

шпангоутов судна в месте контажта борта судна с этими отбойными устройствами. Допускается принимать распределение энергии равномерным, если величины деформаций отбойных устройств отличаются не более, чем на 10% по отношению к наиболее нагруженному отбою. В частности, для отбойных устройств типа Д300, Д400 и 2Д400 при развеске с шагом S < 3,0 м, энертию навала можно считать равномерно распределенной между числом отбойных устройств, указанных в табл. 66.

Таблица 66

Тип отбойного устройства		Длина судна наибольшая L _{иб} , м								
	50	51-100	101-150	151-200	200					
Д300 Д400	1 1 1 1		3 3	3	-					

5.10. Допускаемую величину нормальной к поверхности сооружения составляющей скорости подхода судна $v_{доп}$, м/с, необходимо определять по формуле

$$v_{\rm AOII} = \sqrt{\frac{2gE_{\rm H}}{vD_{\rm c}}},$$
 143(109)

где $E_{\rm H}$ — энергия навала, тс · м, принимаемая по графикам, полученным согласно схеме рис. 93 (33) для случая наименьшей допускаемой нагрузки H_x на причальное сооружение (или на борт судна); v и $D_{\rm c}$ — обозначения те же, что и в п. 5.8 настоящей главы.

Допускаемая величина нормальной к поверхности сооружения составляющей скорости подхода судна определяется по прочностным характеристикам причального сооружения, борта судна, энергоемкости отбойных устройств и соответствует скорости перемещения той точки борта судна, которая в начальный момент навала входит в контакт с отбойными устройствами. Ее значение отражает соответствие несущей способности причального сооружения и его отбойных устройств условиям швартовки различных судов к данному причалу. Поэтому допускаемая величина скорости подхода судна к сооружению $v_{\text{доп}}$ должна определяться не только для вновь проектируемых, но и для существующих причальных сооружений, реконструируемых причалов, при изменении оснащения причала отбойными устройствами, при определении скоростей подхода судов с характеристиками, отличными от расчетных, при составлении обязательного постановления по порту и проч.

Допускаемое значение скорости подхода судна к причалу является одной из основных характеристик швартовки и, в общем случае, отличается от нормативных величин скорости, приведенных в табл. 60(22). Нормативные величины скоростей v не могут служить характеристикой швартовки различных судов к данному причалу, так как предназначены только для определения величины энергии навала расчетного судна в различных условиях швартовки. При выборе характеристик отбойного устройства для оснащения причала исходят из условия, что суммарное значение энергии его деформации и энергии деформации сооружения при действии возникающих нагрузок (не более допускаемых для причала и борта судна) будет не менее величины энергии навала, полученной по формуле 135 (106). Поэтому величина допускаемой скорости подхода расчетного судна оказывается не менее нормативной, и в ряде случаев более ее; понятно, что это превышение тем больше, чем хуже гидрометеорологические условия подхода судна к причалу, принятые в качестве допустимых, или меньше принятая обеспеченность расчетного случая (см. пояснения к п. 5.8).

Допускаемые скорости подхода к причалу судов меньших дедвейтных групп, чем расчетное судно, по энергии навала которого подобраны отбойные устройства, оказываются поэтому заведомо больше нормативных.

Увеличение допускаемой скорости подхода судна к причалу по сравпению с нормативной улучшает условия эксплуатации и снижает вероятность превышения расчетных энергий навала, что при проектировании и расчете сооружения, если это возможно по конструктивным и экономическим соображениям, является желательным.

Уменьшение ее по сравнению с нормативной требует специального обоснования и допустимо лишь для временных причальных сооружений или для отдельных швартовок судов с водоизмещением, превышающим расчётное.

Меньшая величина допускаемой скорости подхода судна по сравнению с нормативной может являться критерием необходимости переоборудования существующего причала отбойными устройствами или другой его реконструкции с целью улучшения условий эксплуатации.

Нагрузки на сооружения от натяжения швартовов

5.11. Нагрузки от натяжения швартовов должны определяться с учетом распределения на швартовные тумбы (или рымы) поперечной составляющей суммарной силы R_x , тс, от действия на одно расчетное судно ветра и течения. Величины R_x , тс, принимаются согласно требованиям пп. 5.2 и 5.3 настоящей главы.

Воспринимаемую одной тумбой (или рымом) силу N, тс, на уровне козырька (рис. 96(34)), независимо от количества судов, швартовы которых заведены за тумбу, а также ее поперечную N_x , тс, продольную N_y , тс, и вертикальную N_z , тс, проекции следует определять по формулам:

Рис. 96 (34). Схема распределения нагрузки на тумбу от натяжения швартовов.

$$N = \frac{R_x}{n \sin \alpha \cdot \cos \beta}; \qquad 144(110)$$

$$N_x = \frac{R_x}{n}; 145(111)$$

$$N_{\rm y} = N \cos \alpha \cdot \cos \beta; \qquad 146(112)$$

$$N_z = N \sin \beta, \qquad 147(113)$$

где n — число работающих тумб, принимаемое по табл. 67(24); α, β — углы наклона швартова, град, принимаемые по табл. 68(25).

Таблица 67(24)

Наибольшая длина судна, 	50 и менее	150	250	300 и более
Наибольшее расстояние между тумбами, I _т , м Число работающих тумб, <i>п</i>	20 2	25 4	30 6	30 8

Величина силы от натяжения швартова N для судов речного флота должна приниматься по табл. 69(26).

Усилие, передаваемое на каждую концевую тумбу носовыми или кормовыми продольными швартовами, для морских судов расчетным водоизмещением более 50 тыс. тс следует принимать равным продольной составляющей суммарной нагрузки R_y от действия ветра и течения на пришвартованное судно, определенной согласно требованиям пп. 5.2 и 5.3 настоящей главы.

Таблица 68(25)

	Углы на	клона шварт	лона швартова, град			
Положения тумб на при-		β				
чальном сооружении	α	судно в грузу	судно порожнем			
на кордоне в тылу	30 40	20 10	40 20			
на кордоне	45	0	0			
то же	30	0	0			
	Положения тумб на при- чальном сооружении на кордоне на кордоне то же	Углы на Положения тумб на при- чальном сооружении α на кордоне в тылу 30 40 на кордоне на кордоне 45 то же 30	Углы наклона шварт Положения тумб на при- чальном сооружении а а судно в грузу на кордоне в тылу 30 40 20 10 на кордоне на кордоне 30 40 20 10 то же 30 0			

Примечание. При расположении швартовных тумб на отдельно стоящих фундаментах значения угла β следует принимать равными 30 град.

Количество и расположение швартовных устройств устанавливается проектом, исходя из условий обеспечения наибольших удобств при эксплуатации; по возможности оно должно соответствовать наиболее благоприятным условиям передачи нагрузок па сооружение.

На причалах общего назначения рекомендуется швартовные тумбы устанавливать на расстоянии 20-30 м одна

Рис. 97. Схема расположения прикордонных и тыловых тумб на причале.

от другой, руководствуясь указаниями табл. 67(24); в этом случае значения углов (α и β), характеризующих направление усилий от натяжения швартовов, принимаются по табл. 68(25).

Подразделение швартовных тумб на прикордонные и тыловые для судов морского флота может быть принято по схеме, приведенной на рис. 97.

В случае, если устанавливаемое на причале в пределах участка длиной 1,4 $L_{\rm HG}$ (по 0,2 $L_{\rm HG}$ от оконечностей судна вне пределов его дли-

ны) количество тумб будет меньше, чем определяемое по рекомедуемому табл. 67 (24) шагу, следует соответственно уменьшить число работающих тумб n в формулах 144 (110)—147 (113).

На специализированных причалах для крупнотоннажных судов по конструктивным и эксплуатационным соображениям может быть применена иная (по сравнению с табл. 67(24)) расстановка причальных тумб.

	Сила от натяжения швар- това N, тс для судов					
Расчетное водоизмещение судна D _с , тыс. тс	пассажирских, грузопассажир- ских, техниче- ского флота со сплошной надстройкой	грузовых и технического флота без сплошной надстройки				
0,1 и менее 0,110,5 0,511 1,12 21-3	5 10 15 20 25	3 5 10 13				
3,1-5		20				
5,1—10 более 10	_	25 30				

Таблица 69(26)

В этом случае число работающих тумб *n* назначается с учетом неравномерного натяжения швартовов; допускается считать, что вследствие неравенства их натяжения нагрузка передается лишь на половину установленного на причале числа тумб. Значения углов α и β при этом целесообразно уточнять по принятому в проекте расположению швартовных тумб.

Концевые тумбы рекомендуется устанавливать на морских причальных сооружениях, предназначенных для обслуживания крупнотоннаж-

ных судов водоизмещением в полном грузу более 50 тыс. тс. Для закрепления носовых и кормовых продольных швартовов таких судов на причале должны быть установлены по две концевые тумбы. Тумбы должны быть расположены в пределах участка длиной $0,2 L_{\rm n6}$ от оконечностей судна вне пределов его длины. При непрерывном причальном фронте допускается в зоне примыкания причалов устанавливать по три концевые тумбы: одна на границе причалов и по одной на расстоянии $0,1 L_{\rm n6}$ в обе стороны от нее. Расстановка тумб должна обеспечивать нормальные условия швартовки для судов всех расчетных для данного причала типов.

Концевые тумбы, устанавливаемые для восприятия усилий, которые передаются от носовых и кормовых швартовов, должны быть рассчитаны на бо́льшие усилия, чем рядовые тумбы. В случаях, когда в силу особенностей архитектуры судна, характеристики режима ветра на акватории или по условиям расстановки рядовых тумб на причале это требование не выполняется, допускается назначать величину усилия на концевую тумбу до значений, равных двойному усилию для рядовой тумбы.

5.12. Для специализированных причалов морских портов, состоящих из технологической площадки и отдельно стоящих палов, величины суммарных нагрузок R_x , R_y от действия ветра и течения, определенных согласно требованиям пп. 5.2 и 5.3 настоящей главы, должны распределяться между группами швартовых канатов следующим образом:

а) на носовые, кормовые продольные и прижимные канаты — по 0,8 R_x, тс;

б) на шпринги — по 0,6 R_x, тс.

Если каждая группа швартовов заводится за несколько палов, то распределение усилий между ними допускается принимать равномерным. Значения углов α и β (рис. 95(34)) и число работающих тумб следует устанавливать по расположению швартовых палов.

При определении швартовных нагрузок, действующих на специализированные причалы морских портов, состоящие из технологической площадки и отдельных палов, до начала расчета должна быть намечена схема расположения палов и установленных на них швартовных тумб для закрепления кормовых и носовых продольных швартовов, прижимных концов и шпрингов (рис. 98).

Для закрепления на причале каждой группы швартовов рекомендуется устраивать по два пала и рассчитывать каждый пал для продольных и прижимных швартовов на усилие 0,4 R_x , а для закрепления шпрингов — на 0,3 R_x . В зависимости от числа швартовов в каждой группе и расчетного усилия для тумб на палах может быть установлено от одной до четырех швартовных тумб. При швартовке к причалу судов с обеих сторон сооружения число палов или тумб на них может быть уд-

Рис. 98. Схема разделения швартовов на группы 1-носовые продольные; 2-кормовые продольные; 3-прижимные; 4шпринги.

воено. Эти рекомендации относятся к обобщенному расчетному случаю и действительны для компоновки причала, схема которого близка к приведенной на рис. 99.

Величины углов, характеризующие направление швартовных усилий в каждой группе, устанавливаются в зависимости от принятого расположения палов и тумб.

Рис. 99. Схема расположения палов специализированных причалов морских портов.

При отсутствии других специальных обоснований рекомендуется расположение палов по схеме, приведенной на рис. 99, принимая следующие соотношения размеров:

 $\frac{a}{L_{\rm H6}} = 1,25 \div 1,55;$ $\frac{b}{L_{\rm H6}} = 0,4;$ $\frac{\Sigma c}{L_{\rm H6}} = 0,1.$

В этом случае значения углов α , образованных в горизонтальной плоскости продольными швартовами с линией кордона, могут быть приняты по табл. 70; для прижимных канатов $\alpha = 90 \pm 20^\circ$, а для шпрингов $\alpha = 10 \div 20^\circ$.

Таблица 70

Водоизмещение судна в полном грузу D, тыс. тс	≪80	100	≥250
а, (град)	60 <u>±</u> 10	50±10	$\frac{45\pm10}{}$

При ином расположении швартовных палов (по сравнению со схемой на рис. 99) допускается при соответствующем обосновании уточнять распределение усилий между группами швартовов специальным расчетом, учитывающим реальные упругие характеристики швартовных канатов и пространственные перемещения судна под действием нагрузки R_x, при условии, что швартовы являются гибкими нитями, а суммар-

Рис. 100. Типы конструкций и схема расположения причальных сооружений широкого пирса (к примеру 27).

ное усилие, действующее на швартовные палы, принимается равным $3 R_x$.

Пример 27. Определить нагрузки от судов для комплекса причальных сооружений широкого пирса, расположенного на акватории морского порта, защищенной от волнения и течений. Схема расположения пирса показана на рис. 100.

Комплекс причальных сооружений состоит из четырех причалов различных конструкций, расположенных по периметру широкого пирса:

а) причала №1 — для обслуживания судов портофлота;

б) причала № 2 — для внутрибассейновых перевозок генпрузов;
 в) причала № 3 — для экспорта — импорта генпрузов;

г) причала № 4 — для экспорта навалочных грузов (руда, уголь).

Конструктивные особенности и расположение этих причалов приведены на рис. 100 и в табл. 71.

Таблица 71

№ прича- ла	Конструкции причалов	Длина ^{1.} _п , м	Глубина у кордона <i>Н</i> , м	Отметка кордона, м	Ширина бортовой балки, м	Характери- стика соору- жения, коэф- фициент жест- кости, тс/м
1	Гравитационная набе- режная из массивовой клалки	100	5.00	1.5		жестк.
2	Уголковая набережная контрфорсного типа	160	8.25	21	21	то же
3	Эстакада-оторочка на железобетонных ко- лоннах-оболочках ти- па T с подпричальным	50	11 50	2,5	-,-	2×104
4	Эстакада-оторочка на железобетонных ко- лоннах-оболочках		10.00	2,0	2,0	
	большого диаметра	260	18,00	2,5	2,3	1,2×104

Расчетные суда:

для причала № 1 — бункеровщик типа СБ, водоизмещением 1750 тс в полном грузу, наибольшее судно для судов портофлота;

для причала № 2 — сухогруз общего назначения водоизмещением 12,5 тыс. тс в полном грузу;

для причала № 3 — сухогруз общего назначения водоизмещением в полном грузу 22,0 тыс. те;

для глубоководного причала № 4 — балкер полным водоизмещением 120 тыс. тс, в балластном состоянии загрузки при подходе к причалу. Расчетные харак геристики судов приведены в табл. 72.

Таблица 72

№ причала	Расчетное водоизмеще- ние, D, тыс. тс	Длина наи- большая, L _{нб} , м	Ширина <i>В</i> , м	Высота борта Н _б , м	Осадка расчетная <i>T</i> , м	Категория ледовых подкреплений	Предельные нагрузки на борт судна, тс/м/тс/м ²	Система бортового набора	Коэффициент жесткости бортового перекрытия <i>k</i> _ж , тс/м	Площа водной ност боковой <i>F_x</i>	ди над- парус- и, м ² лобовой <i>F</i> у
1 2 3 4	1,74 12,5 22,0 72	52,6 130,0 170,0 245,0	8,5 17,5 22 33,8	5,5 9,7 12,9 22,0	4,3 8,0 9,8 8,8	Л ₃ без Л Л ₃ Л ₂	30,0/50,0 50,0/95,6 82,0/116 119/157	попереч- ная то же продоль- ная	0,5 · 104 0,5 · 104 0,5 · 105 0,5 · 105	270 1762 2806 5150	80 368 584 1330

1. Нагрузки на суда от воздействия ветра. Поскольку при производстве грузовых операций возможны различные состояния загрузки судов, для определения ветровых воздействий рассматривается наихудший расчетный случай — стоянка судов у причала порожнем.

В соответствии с данными по ветровому режиму в районе расположения проектируемого комплекса причалов принимаем расчетное значение скорости ветра W = 20 м/с в секторе от 0 до 90° по отношению к продольной оси пирса, в направлениях, указанных на рис. 100.

Суда, ошвартованные у причалов № 1 и 2, не будут испытывать экранирующего влияния причала и сооружений на нем; для судна, ошвартованного у причала № 3, будет сказываться экранирующее влияние причала и склада в торце пирса; суда, ошвартованные у причала № 4, могут испытывать экранирующее влияние причала и находящегося на нем навалочного груза, но, принимая наихудший расчетный случай, учтем только экранирующее влияние причала.

Поскольку в соответствии с п. 5.11 расчет продольной составляющей нагрузки от воздействия ветра R_y необходим только для определения нагрузок от натяжения швартовов на концевые тумбы для судов, имеющих водоизмещение в полном грузу более 50 тыс. тс, он производится только для балкера, ошвартованного у причала № 4.

Поперечные составляющие нагрузок от воздействия ветра на суда, ошвартованные у причалов № 1 и 2, где экранирование отсутствует, определяем по формуле 117(97); результаты расчета представлены в табл. 73.

Таблица 73

№ причала	Площадь парусности <i>Г_х,</i> м ²	Скорость ветра W _x , м/с	Величина коэффици- ента х	Величина нагрузки <i>R_X,</i> тс	
1	270	20	0,80	6,48	
2	1762	20	0,60	31,77	

При расчете поперечных составляющих нагрузок от воздействия ветра на суда, ошвартованные у причалов № 3 и 4, необходимо учесть значения площадей экранирующих преград. Их определение производим по формулам 122 и 123 с учетом данных, приведенных на рис. 99 и в табл. 73 и 74, а именно:

для причала № 3:

$$h_{\rm K} = 2,5$$
 m; $H_{\rm g} = 10,0$ m; $l_{\rm g} = 10,0$ m; $L_{\rm g} = 40,0$ m; $L_{\rm c} = L_{\rm n} = 80$ m; $L = L_{\rm n} = 80,0$ m;

для причала № 4:

$$h_{\rm K} = 2,5$$
 M; $H_{\rm g} = 0;$ $L = L_{\rm H0} = 245$ M.

Соответственно этим данным имеем:

приведенная площадь экранирования причала № 3 и склада в его торце: при $\alpha_{\mathfrak{p}} = 0.5 \frac{10,0}{10,0} \cdot \frac{40,0}{80,0} = 0,25$

$$F_{\mathfrak{g}} = (2.5 + 0.25 \cdot 10.0) \cdot 80.0 = 400 \text{ m}^2;$$

Таблица 74

№ при- чала	Пло парус суд	щадь Ности (на, 1 ²	Приве плоц экранир м	денная цадь ования, 1 ²	Разност значен площал русност и приве ми экра щими п дям	Разность между значениями площадей па- русности судов и приведенны- ми экранирую- щими площа- дями		Скорость ветра W, м/с		Величина коэффици- ента х (по табл. 57(21))		Нагрузки, тс	
	F _x	Fy	F _э	F _{əy}	F _x -F _{9x}	F _y -F _{yy}	w _x	w _y	Для попе- речной состав- ляющей	Для про- дольной состав- ляющей	R _x	R _y	
3 4	2806 5750	1330	400 612	0,0	2406 5138	1330	20 20	20	0,55 0,50	0,94	39,70 77,10	25,00	

приведенная площадь экранирования причала № 4 при $\alpha_3 = 0$ $F_3 = 2.5 \cdot 245 = 612 \text{ м}^2.$

Результаты расчета величин нагрузок R_x по формуле 117 (97) и R_y по формуле 118 (98) от воздействия ветра на суда, ошвартованные у причалов № 3 и 4, представлены в табл. 74.

2. Энергия навала судна на причал. Величину энергии навала судна на причал, затрачиваемую на работу по деформации отбойных устройств и причального сооружения, определяем по формуле 135(106). Результаты расчета представлены в табл. 75.

Таблица 75

, Ме причала	Состояние загрузки судна	Водоизмещение судна в момент подхода к при- чалу D, тс	Скорость подхода судна к причалу v, м/с	Величина коэффи- циента v	Величина энергии навала судна Е _н , тм	Примечание
1	В полном грузу	1740	0,220	0,50	-2,15	-
2	Тоже	12500	0,120	0,50	4,60	—
3		22000	0,110	0,55	7,46	
4	В балласте	72000	0,095	0,47	15,52	Величина коэффи- циента у снижена на 15% в связи с подходом судна в балласте

3. Нагрузки от навала судна при подходе к сооружению. Величины нагрузок от навала судов на причалы рассчитываемого комплекса определяем по указаниям, приведенным в п. 5.9, и пояснениям к нему.

Для определения этих нагрузок предварительно назначаем тип отбойных устройств для каждого причала и схему их размещения. Эти сведения приведены в табл. 76.

Таблица 76

№ причала	Энергия нава- ла судна Е _н , тс.м	Тип отбойного устройства	Длина отбой- ного устрой- ства в горизон- тальном на- правлении, м	Шаг разме- щения отбой- ных уст- ройств S, м	
1 2 3 4	2,15 4,60 7,46 15,52	Д400 2Д400 2Д400 а) Д1000 б) АЗД300	2,0 2,0 2,0 3,0 3,0	5,0 5,0 5,0 8,0 8,0	

Характеристики отбойных устройств принимаем по справочным данным, а шаг размещения их на причальном сооружении — по табл. 65.

Поскольку жесткость всех рассматриваемых конструкций причальных сооружений велика, для определения нормальных составляющих нагрузок от навала судов H_x используем непосредственно характеристики отбойных устройств.

Величины касательных (продолыных) нагрузок от навала судов H_y , тс, определяем по формуле 139(108), принимая значения коэффициента трения f=0,5.

Результаты расчетов представлены в табл. 77.

Поскольку для всех полученных величин напрузок H_x выполняется условие $E_1 \ge 10E_2$ величиной энергии деформации сооружения можно пренебречь.

Сравнение полученных значений нагрузок от навала судов H_x , тс со справочными данными о предельных нагрузках на бортовые перекрытия

Таблица 77

№ при- чала	Энергия павала судна Е _н , тс · м	Энергия дс- формации от- бойного усг- ройства Е ₁ , тс.м	Энергия	Нагрузка от навата судна		
			деформации сооружения Е ₂ , тс·м	<i>Н_х</i> , тс	<i>Н_у,</i> тс	
1	2 15	9.15		23.0	11.5	
	4.60	4.60	_	85.0	42.5	
3	7,46	7,03	0,43	131,0	65,5	
4	15,52	a) 15,26	a) 0,26	a) 183,0	91,5	
J		б) 14,13	6) 1,39	6) 80,0	40,0	

судов показали, что найденные значения безопасны для судов и, следовательно, должны быть приняты для расчета сооружений.

4. Нагрузки от навала судна на причальное сооружение под действием ветра. Нагрузка от навала под действием ветра возникает от судов, ошвартованных у причалов № 1 и 2.

Интенсивность нагрузки q_н, тс/м, от навала судов на причалы № 1 и 2 под действием ветра определяем по указаниям, приведенным в п. 5.7. Протяженность прямолинейной части борта судов, ошвартованных у этих причалов, принимаем по справочным данным. Результаты расчета представлены в табл. 78.

Таблица Т	78
-----------	----

№ при- чала	Величина нагрузки <i>R_x</i> , тс	Протяженность прямолиней- ной части борта судна l ₆ , м	Длина причала L _{II} , м	Протяженность /участка контакта L _к , м	Іїнтенсив- ность нагрузки q _н , тс/м
1	6,48	18,5	100	18,5	0,35
2	31,77	48,0	160	48,0	0,73

5. Нагрузки от натяжения швартовов на рядовые тумбы. Нагрузки от нагяжения швартовов на рядовые тумбы возникают от судов, ошвартованных у причалов № 3 и 4.

Усилия, передаваемые на каждую рядовую швартовную тумбу, и их составляющие определяем по формулам 144 (110)—147 (113). Значения углов α и β, характеризующих направление швартовных усилий, определяем по табл. 68 (25), рассматривая все тумбы как прикордонные.

Результаты расчетов приведены в табл. 79.

Таблица 79

№ при- чала	Величины нагрузок <i>R_x</i> , тс	Число работаю- щих тумб <i>п</i>	Значения углов, град		Величины нагрузок от натяжения швартовов и их составляющие, тс			
			α.	β	N	N _x	Ny	N _z
3 4	39,7 77,1	2 4	30 30	40 40	51,8 50,4	19,8 19, 3	34,2 33,3	33,2 32,4

6. Нагрузки от натяжения швартовов на концевые тумбы. В соответствии с указаниями, приведенными в п. 5.11 и в пояснениях к нему, установка концевых тумб производится только на причале № 4 в количестве четырех штук: по две в корневой и головной части причала. Каждая тумба рассчитывается на величину усилия $R_y=25,0$ тс соответственно результатам расчета, приведенным в табл. 74.

Пример 28. Определить величины нагрузок от навала судна на сооружение и от натяжения швартовов под действием ветра и приливноотливного течения для танкера дедвейтом 100 тыс. тс, ошвартованного у пирса сквозной конструкции. Схема причала приведена на рис. 101.
Исходные данные о расчетном судне: длина наибольшая $L_{\rm h6} = 255$ м; длина между перпендикулярами $L_{\rm nn} = 230$ м; осадка в полном грузу T = = 14,0 м; надводная лобовая площадь парусности $F_y = 1440$ м²; протяженность прямолинейной части борта $l_6 = 110$ м.

• Сила ветра вдоль причала $W_y = 34$ м/с.

Скорость приливно-отливных течений $u_{\rm T} = 1,0$ м/с.

Из анализа исходных данных следует, что воздействие ветра на ошвартованное судно необходимо учитывать при расчете копцевых тумб (п. 5.11), а воздействие течения — при определении нагрузок от патяжения швартовов на рядовые тумбы пирса и от навала.

Поскольку при производстве грузовых операций возможно изменение водоизмещения судна от порожнего состояния до полной загрузки, рассмотрим наихудшие расчетные случаи: воздействие ветра на порожнее судно, а воздействие течения — на судно в полном грузу.

Рис. 101. Схема причала к примеру 28.

1. Продольная составляющая нагрузки от возлействия ветра на судно по формуле 118 (98)

$$R_{\rm v} = 5.0 \cdot 10^{-5} \cdot 1440 \cdot (34)^2 \cdot 0.92 = 74.5 \text{ rc.}$$

2. Поперечная составляющая нагрузки от воздействия течения на судно по формуле 124 (101)

$$R_x = 6 \cdot 10^{-2} \cdot 230 \cdot 14 \cdot 1 = 193$$
 rc.

3. Нагрузка от навала судна под действием течения по формуле 128(105)

$$q_{\rm H} = 1.1 \cdot \frac{193}{110} = 1.93 \, {\rm TC/M}.$$

4. Нагрузка *N*, тс, на рядовые тумбы от натяжения швартовов по формуле 144 (110):

N = 63 тс — для прикордонных тумб,

N = 40,4 тс — для тыловых тумб.

5. Нагрузка на концевые тумбы под действием ветра принимается по п. 5.11 равной величине нагрузки R_y от воздействия ветра, т. е. $N = = R_y = 74,5$ тс.

Пример. 29. Определить нагрузку от навала при подходе к специализированному морскому причалу танкера дедвейтом 15,2 тыс. тс и нагрузки от натяжения швартовов под действием ветра при стоянке танкера у этого причала. Схема причала приведена на рис. 102, Исходные данные: водоизмещение расчетного судна в полном грузу $D_c = 21,0$ тыс. тс; водоизмещение расчетного судна при швартовке $D_m = 12,6$ тыс. тс; длина судна наибольшая $L_{\rm H6} = 162$ м; предельная нагрузка на 1 м длины бортового перекрытия $[q_{\rm H}] = 80$ тс/м; коэффициент жесткости причального сооружения $k_{\rm H} = 1,11 \cdot 10^3$ тс/м; сила ветра в секторе 40° W = 30 м/с.

1. Воздействие ветра на судно. Для определения нагрузок от натяжения швартовов для специализированного морского причала, состоящего из технологической площадки и отдельных палов, необходимо определить лишь поперечную составляющую нагрузки от воздействия вет-

Рис. 102. Схема причала к примеру 29.

ра R_x , тс, по формуле 117 (97) для судна порожнем. В результате вычислений получаем $R_x = 71,0$ тс.

2. Энергия навала судна при подходе к сооружению. Причал предназначен для экспорта нефтепродуктов, поэтому расчетным случаем будет подход судна в балластном состоянии. Величину энергии навала определяем по графикам, приведенным на рис. 92; снятые с графика значения энергии уменьшаем на 15%, так как судно швартуется в балласте. Поскольку навал судна при швартовке возможен как на рядовой (средний) пал, так и на головной пал, определяем два значения энергии навала судна:

энергия навала на рядовой пал (по кривой 3) — 6,5 тс · м;

энергия навала на толовной пал (по кривой 4) — 16,0 тс · м.

3. Нагрузки от навала судна при подходе к сооружению. Величину нормальной составляющей нагрузки от навала судна определяем по указаниям, приведенным в п. 5.9. Ввиду относительно небольшой жесткости сооружения пренебрегать величиной энергии его деформации нельзя. Поэтому на графике характеристик отбойных устройств Д400, выбранных для оснащения причала, строим на рис. 103 график зависимости суммарного значения энергии деформации отбойного устройства, причала и корпуса судна, суммируя значения энергии деформации при одинаковых нагрузках. При этом снимаем с графика энергию деформации отбойного устройства, а энергию деформации причала и корпуса судна вычисляем по формуле 138(107). Например, при величине нагрузки 100 тс энергия деформации отбоя составит 4,2 тс м, а энергия деформации борта судна и причала будет 4,5 тс м; суммарная величина энергии деформации си-

Рис. 103. Графики для определения нагрузок от навала судна при подходе к сооружению (к примеру 29).

стемы судна—отбой—причал составит 8,7 тс·м (на рис. 103 отмечено крестом).

Используя построенную кривую, находим величины нормальных нагрузок на причал, соответствующие вычисленным энергиям навала судна:

$$H_x = 153$$
 тс — на крайний пал,

 $H_x = 83$ тс — на средний пал.

Соответствующие касательные нагрузки

 $H_y = 0.5 \cdot 153 = 76.5 \text{ tc}$ и $H_y = 0.5 \cdot 83 = 42.5 \text{ tc}.$

Принятый тип отбойных устройств удовлетворяет условиям эксплуатации, так как 153<80×2 (см. исходные данные). 4. Нагрузки от натяжения швартовов. В соответствии с указаниями, приведенными в п. 5.12, определяем:

усилие на палы для закрепления носовых и кормовых продольных концов (на рис. 102) не показаны) $N = 0.8 \cdot 71 = 56.8$ тс;

усилие на палы для закрепления прижимных конщов (№ 5 и 11) N=0,8 · 71=56,8 тс;

усилие на палы для закрепления шпрингов (№ 7 и 9) N = = 0,6 · 71 = 42,6 тс.

Для закрепления каждой группы концов на пале установлено по две тумбы, каждая из которых рассчитывается на действие полного усилия в группе.

Пример. 30. Определить нагрузки от навала речного грузового судна водоизмещением 6729 тс в полном грузу к причальному сооружению в виде штунтовой стенки с грунтовой засыпкой; отбойное устройство — рама из стальных труб, заполненных бетоном, опирающаяся на амортизаторы из сдвоенных автопокрышек (рис. 104).

1. Величину энергии навала судна при подходе к сооружению определяем по формуле 135(106) при v=0,3 по табл. 61(23); v==0,133 м/с по табл. 60(22):

$$E_{\rm H} = 0.3 \cdot \frac{6729 \cdot (0.133)^2}{2 \cdot 9.81} = 1.82 \text{ tc} \cdot \text{m}.$$

Нагрузки от навала судна определяем для наихудшего расчет-

ного случая — навала на одно отбойное устройство.

При построении графика по схеме, приведенной на рис. 93 (33), принималось, что коэффициент жесткости шпунтовой стенки $k = 0.4 \cdot 10^4$ тс/м, коэффициент жесткости бортового перекрытия судна $k = 0.5 \cdot 10^4$ тс/м, деформацией рамы из стальных труб пренебрегаем.

4

Полученный график представлен на рис. 105.

В соответствии с полученным значением величины энергии навала $E_{\rm H}$ =1,82 тс.м по этому графику определяем величину нагрузки $H_{\rm x}$ ==35,2 тс.

По формуле 139(108), принимая значение коэффициента трения стальной обшивки обносного бруса судна по поверхности стальных труб f=0,15, находим

$$H_y = 0.15 \cdot 35.2 = 5.3$$
 rc.

Пример 31. Определить нагрузки от навала речного грузового судна под действием прижимного ветра на пришлюзовой причал.

Исходные данные: пришлюзовой причал сквозной конструкции на Волго-Балтийском водном пути им. В. И. Ленина; расчетное судио — сухогрузный теплоход проекта № 507 водоизмещением в грузу 6730 тс; боковая парусность судна (порожнем) $F_x = 896 \text{ м}^2$; схема расположения причала и расчетного судна приводится на рис. 106,

1. Поперечная составляющая окорости ветра для 1 района определяем по величине скоростного напора, приведенной в СНиП на нагрузки и воздействия, и по формуле 121:

$$W = 4 \sqrt{q_0} = 4 \sqrt{27} = 20.8 \text{ m/c}.$$

Поперечная составляющая нагрузки на судно от ветра по формуле 117 (97) и табл. 57 (21) при наибольшей длине судна $L_{\rm H6}$ = 140 м и коэффициенте χ = 0,59 (по интерполяции)

Рис. 105. Расчетные графики 1-зависимость суммарной деформации от нагрузки; 2-энергия, соответствующая суммарной деформации.

2. Нагрузку от навала судна H_x на *i*-ый бычок определяем по формуле 129.

Коэффициенты жесткости всех пяти бычков, соприкасающихся с бортом судна, одинаковы: $k_1 = k_2 = k_5$.

Несимметричность распо-

ложения судна относительно бычков (рис. 106) учитывается введением в правую часть формулы 129 множителя

$$\eta_l = 1 + (\eta - 1) \frac{2a_l}{L_{\kappa}},$$

где L_к — длина участка контакта судна с сооружением;

a_i — расстояние от середины линии контакта судна со всеми сооружениями до края *i*-го бычка;

η =
$$\frac{2L}{L_{H6}}$$
 — коэффициент, учитывающий эксцентриситет приложения равнодействую-
щей от ветрового навала относительно середины линии контакта;

$$l = \frac{80,5 \text{ M}}{140} = 1,15.$$

10*

,№	а _і ,	L _к ,	η	H _{xi} ,
бычков	м	м		TC
1	42,5	85	1,15	4,35
2	22,5	85	1,06	4,06
3	0	85	1,00	3,73
4	22,5	85	0,94	3,60
5	42,5	85	0,85	3,25

Tabauna 80

Нагрузка на крайний из соприкасающихся с судном бычок № 1 при $a_1 = \frac{85}{2} = 42,5$ м и $\eta_1 = 1 + (1,15-1) \cdot \frac{2 \cdot 42,5}{85} = 1,15$

$$H_{x_1} = 1, 1 \cdot \frac{17, 2}{5} \cdot 1, 15 = 4, 35$$
 rc.

Аналогично определяются нагрузки на остальные 4 бычка. Результаты расчета сведены в табл. 80.

Рис. 106. Схема расположения пришлюзового причала и расчетного судна (к примеру 31).

6. НАГРУЗКИ И ВОЗДЕЙСТВИЯ ЛЬДА НА ГИДРОТЕХНИЧЕСКИЕ Сооружения

6.1. Нагрузки от льда на гидротехнические сооружения должны определяться на основе исходных данных по ледовой обстановке в районе расположения сооружения для периода времени с наибольшими ледовыми воздействиями; при этом ряд натурных наблюдений должен быть не менее 5 лет.

Пределы прочности льда на сжатие R_c , тс/м², на изгиб R_u , тс/м², и на раздробление (с учетом местного смятия) R_p , тс/м², должны определяться по опытным данным, а при их отсутствии допускается:

a) принимать R_c по табл. 81(27);

Таблица 81(27)

Соленость льда S, °/00	Предел прочности льда на сжатие R _c , тс/м², при средне- суточной температуре воздуха <i>t</i> , °C						
	0	-3	-15	30			
менее 1 (прес- ный лед) 1—2 3—6	45 40 30	75 65 50	120 105 85	150 135 105			

t, °С — среднесуточная температура воздуха за трое суток до действия льда на сооружение при толщине льда до 0,5 м и менее, или за шесть суток при толщине льда более 0,5 м; S — соленость льда, °/₀₀, принимаемая равной 20% от солености воды—для льда возрастом до двух месяцев, или 15% от солености воды—для льда возрастом два месяца и более.

б) определять *R_n* по формулам: для пресноводного льда

$$R_{\mu} = 0.75 R_{c};$$
 148(114)

для морского льда

$$R_{\rm H} = 0.5 R_{\rm c};$$
 149(115)

в) определять R_p по формуле

$$P_{\rm p} = k_i R_{\rm c},$$
 150(116)

где k_j — коэффициент, принимаемый по табл. 82(28).

П р и м е ч а н и я: 1. Нагрузки и воздействия льда на морские гидротехнические сооружения должны определяться согласно требованиям настоящей главы только при расчетной толщине льда 1,5 м и менее:

2. Для водохранилищ и озер, а также при наивысшем уровне ледохода на реках южнее линни Архангельск — Киров, Уфа, Кустанай, Караганда, Усть-Каменогорск допускается принимать предел прочности льда на раздробление $R_p=45$ тс/м².

Таблица 82(28)

Значение <i>b</i> / <i>h</i> _л	1	3	10	20	30	50 и более
Коэффициент k _j	2,5	2,0	1,5	1,2	1,0	0,5

b — ширина сооружения по фронту (опоры или секции сооружения) на уровне действия льда, м; h_n — расчетная толщина льда, м, принимаемая равной 0,8 от максимальной за зимний период толщины льда обеспеченностью 1%.

1. Для определения ледовых нагрузок необходимо располагать следующими статистическими данными о характере ледового режима:

а) скорость движения ледяного поля; б) площадь ледяного поля; в) толщина ледяного поля; г) толщина зажора; д) толщина слоя снега на льду; е) соленость воды и льда.

Эти данные могут быть определены на основании «Справочника по гидрологическому режиму морей и устьев рек СССР» ГУГМС при Совете Министров СССР, «Гидрологических ежегодников» ГУГМС при Совете Министров СССР, а также данных ледовых разведок в районах строительства.

2. Среднесуточные температуры воздуха и скорости ветра определяются на основании справочников по климату СССР и фактических измерений Гидрометслужбы в районая строительства.

3. Срочные измерения температуры воздуха и скорости ветра определяются по таблицам ТМ-1, находящимся в архиве ГГО и на метеостанциях.

4. Уровенный режим определяется на основании гидрологических ежегодников.

5. Для сооружений, расположенных на реках и водохранилищах, можно определять ледовую нагрузку при любой толщине льда.

6.2. Точку приложения равнодействующей ледовой нагрузки необходимо принимать ниже расчетного уровня воды на $0,3 h_n$, м.

Нагрузки на сооружения от движущегося торосистого ледяного поля, состоящего из несмерзшихся льдин, определенные согласно требованиям пп. 6.3—6.6 настоящей главы, необходимо увеличивать умножением их на коэффициент, принимаемый: для Балтийского, Японского, Черного, Азовского и Каспийского морей — 1,3 и Берингова, Охотского и Белого морей — 1,5, для других морей арктического бассейна — по данным натурных наблюдений.

Нагрузки от ледяных полей на сооружения

6.3. Нагрузки от движущихся ледяных полей на сооружение с вертикальной передней гранью необходимо принимать по наименьшему значению из определенных по формулам:

для отдельно стоящих опор при прорезании ими льда P_1 , тс, или при остановке ледяного поля опорой P_2 , тс,

$$P_1 = m_j R_{\rm p} b h_{\rm n}, \qquad 151(117)$$

$$P_{2} = 0.4 v_{n} h_{n} \sqrt{m_{e} \Omega R_{p}}; \qquad 152(118)$$

для секции сооружения при ударе отдельных льдин P₃, тс, или при разрушении льда P₄, тс,

$$P_{3} = 0.7 v_{a} h_{a} \sqrt{\Omega R_{c}}, \qquad 153(119)$$

$$P_4 = 0.5 R_{\rm c} b h_{\rm A}, \qquad 154(120)$$

- где m_j и m_e коэффициенты формы, определяемые по табл. 83(29) для опор с передней гранью в виде многогранника (или полуциркульных), прямоугольника и треугольника;
 - v_n скорость движения ледяного поля, м/с, определяемая по данным натурных наблюдений, а при их отсутствии допускается v_n принимать равной: для рек—скорости течения воды; для водохранилищ и морей—3% от значения скорости ветра 1%-ной обеспеченности в период движения льда, но не более 1 м/с;
 - Q площадь ледяного поля, м², определяемая по натурным наблюдениям в данном или смежных пунктах;
- $R_{\rm p}$, $R_{\rm c}$, b и $h_{\rm A}$ обозначения те же, что в п. 6.1 настоящей главы.

Таблица 83(29)

	Коэффициенты формы m _j и m _e для опор с передней гранью в виде										
Коэффи- циенты	много-	прямо-	треугольника, с углом заострения в плане, град								
	гранника	угольника	45	60	75	90	120	150			
m j	0,90	1,00	0,54	0,59	0,64	0,69	0,77	1,00			
m _e	2,4	2,7	0,2	0,5	0,8	1,0	1,3	2,7			

При движении ледяного поля под углом $\theta \leq 80^{\circ}$ к фронту сооружения (или с осью опоры) нагрузку от льда необходимо уменьшать путем умножения ее на sin θ .

При отсутствии натурных данных площадь ледяного покрова принимается:

для опор мостов $\Omega = 1,75 l^2$, где l — величина пролета моста в м;

при наличии перед сооружениями участков водной поверхности с гидравлическими уклонами более 0,007 $\Omega = 10 h_{\pi} R_{\mu}$;

при наличии перед сооружениями участков водной поверхности с кривыми спада $\Omega = 5 h_{\pi} R_{\mu}$.

6.4. Нагрузки от ледяного поля на сооружение откосного профиля или на отдельно стоящую опору, имеющую в зоне действия льда наклонную поверхность, необходимо определять:

а) горизонтальную составляющую нагрузки P_x , тс, — по наименьшей из величин, полученных по формуле 151 (117) п. 6.3 настоящей главы и по формуле

$$P_x = m_t k_{\rm B} R_{\rm H} h_{\rm A}^2; \qquad 155(121)$$

б) вертикальную составляющую нагрузки Pz, тс, — по формуле

$$P_z = \frac{P_x}{m_t},$$
 156(122)

где k_6 — коэффициент, принимаемый по табл. 84(30); m_t — коэффициент, принимаемый по табл. 85(31);

R_и, h_л, b - обозначения те же, что в п. 6.1 настоящей главы.

Таблица 84(30)

Вид преграды или сооружения	Прямоугол при значе	ьная опора ении <i>b/h_л</i>	Конусообраз- ная опора	Сооружение откосного	
	5 и менее	более 5		профиля	
Коэффициент к _в	1	$\frac{0,2b}{h_{\pi}}$	$1+\frac{0,05b}{h_{\pi}}$	0,1 <i>b</i>	

Повышенная шероховатость откосов обусловливает увеличение нагрузок на них. Поэтому при определении воздействия льда на неукрепленный откос или на его крепление каменной наброской в формулу 155(121) вводятся в виде множителей коэффициенты:

 k_1 — коэффициент, учитывающий заложение откоса m_{α} и определяемый по формуле

$$k_1 = 1 + 0,055 (10 - m_a);$$

коэффициент податливости грунта, значения которого принимаются равными: 1,5 — для каменной наброски с размерами камня > 0,2 м, 1,2 — для щебня и 1,1 — для песка.

Таблица 85(31)

Угол наклона ре- жущей грани со- оружения к гори- зонту β, град	15	30	45	60	75	80	85
Коэффициент <i>m</i> t	0,3	0 ,6	1	1,7	3,7	5,6	18
Коэффициент m_t 0,3 0,0 1 1,7 3,7 5,0 18 Примечание. Величину угла наклона к горизонту ре- жущей грани сооружения при его обледенении допускается увеличивать (но не более чем на 20 град) с учетом опыта экс- плуатации существующих в данном районе сооружений.							

6.5. Нагрузку от движущихся ледяных полей P_5 , тс, на сооружение из ряда вертикальных опор, расположенных на расстоянии l, м, при значениях b/l от 0,1 до 0,9 необходимо принимать по наименьшему из зна-

157

чений, определенных по формуле 151(117) п. 6.3 настоящей главы и по формуле

$$P_{5} = 0.5m_{j}R_{c}bh_{\pi}\left(2.5-1.5\frac{b}{l}\right).$$
 158(123)

Нагрузку от движущихся ледяных полей Р₆, тс, на упруго податливую опору необходимо принимать по наименьшему из значений, определенных по формуле 151 (117) п. 6.3 настоящей главы и по формуле

$$P_{6} = 0.3 v_{\pi} h_{\pi} \sqrt{\frac{\Omega}{k_{y} h_{\pi} + \frac{0.2}{R_{c} m_{e}}}},$$
 159(124)

где k_y — коэффициент упругой податливости опоры сооружения, тс/м, определяемый методами строительной механики; R_c , m_j , v_π , b, m_{ϵ_j} , h_π , Ω — обозначения те же, что в пл. 6.1 и 6.3 настоящей главы.

При $\frac{b}{l} < 0,1$ и $\frac{b}{l} > 0,9$ следует вести расчет соответственно по формулам 151(117) и 152(118), как для отдельно стоящих опор, и - 153(119) и — 154 (120), как на вертикальные стены.

6.6. Натрузку от остановившегося ледяного поля, наваливающегося на сооружение под воздействием течения воды и ветра, Р7, тс, необходимо определять по формуле

$$P_7 = (p_1 + p_2 + p_3 + p_4) \,\Omega, \qquad 160(125)$$

в которой величины p₁, p₂, p₃ и p₄, тс/м², определяются по формулам:

$$p_1 = 5 \cdot 10^{-4} v_{\rm B^2}; \qquad 161(126)$$

$$p_2 = 0.05 \, \frac{h_{\rm A} v_{\rm B}^2}{L_{\rm A}}; \qquad 162(127)$$

$$p_3 = 0.92h_n i_n;$$
 163(128)

$$p_4 = 2 \cdot 10^{-6} W^2$$
, M, 164(129)

- где $v_{\rm B}$ скорость течения воды под льдом обеспеченностью 1% из максимальных средних значений в период навалов льда, м/с;
 - $W_{\rm M}$ максимальная скорость ветра в период ледохода обеспеченностью 1 %, м/с; $L_{\rm A}$ средняя длина ледяного поля по направлению потока, принимаемая по данным натурных наблюдений, а при их отсутствии для рек допускается принимать L_n, равной утроенной ширине реки, м;

 i_n — уклон поверхности потока; h_n и Ω — обозначения те же, что в пп. 6.1 и 6.3 настоящей главы.

При определении нагрузок на сооружения, расположенные на морях и водохранилищах, значения p_1 , p_2 и p_3 приравниваются нулю, так как в этих условиях можно практически считать $v_{\rm B} = 0$ и i = 0.

Пример 32. Определить нагрузку от движущихся ледяных полей на опору моста.

Исходные данные: район строительства — бассейн р. Лены; максимальная толщина льда 1%-обеспеченности $h_t = 1,8$ м; ширина опоры на уровне ледохода b = 4,3 м; ширина пролета моста l = 100 м; скорость течения воды v_в=2,5 м/с; передняя грань опоры вертикальная, с углом заострения 60°; размеры ледяных полей по наблюдениям в натуре 100× ×100 м.

Расчетные данные: расчетная толщина льда согласно п. 6.1, табл. 82(28)

$$h_{\pi} = 0.8 \cdot 1.8 = 1.44$$
 M;

расчетная скорость движения льдин согласно п. 6.3 принимается равной скорости течения воды $v_{\pi} = 2.5$ м/с; предел прочности льда сжатию по табл. 81 (27) при t=0° С

$$R_{\rm c} = 45 \ {\rm tc}/{\rm m}^2;$$

предел прочности льда раздроблению (с учетом местного смятия) по формуле 150(116) и табл. 82(28)

 $\operatorname{npu} \frac{b}{h_n} = \frac{4.3}{1.44} = 3, \ k_j = 2 \quad R_p = 2 \times 45 = 90 \text{ tc/m}^2;$

коэффициенты формы опоры по табл. 83(29) $m_j = 0.59; m_{\epsilon} = 0.50.$ Решение.

По формулам 151(117), 152(118)

 $P_1 = 0.59 \cdot 90 \cdot 4.3 \cdot 1.44 = 328 \text{ tc};$

$$P_2 = 0.4 \cdot 2.5 \cdot 1.44 \sqrt{0.5 \cdot 10000 \cdot 90} = 965 \text{ tc.}$$

Согласно п. 6.3 принимается наименьшая расчетная нагрузка $P_{\text{pacy}} = = 328 \text{ тс.}$

Пример 33. Определить нагрузку от движущихся ледяных полей на отдельно стоящую опору в виде многогранника с вертикальными гранями.

Исходные данные: район строительства — Балтийское море; максимальная толщина льда 1%-ной обеспеченности $h_t = 0.5$ м; ширина опоры на уровне воздействия льда b = 8 м; соленость льда $S = 2\%_0$; среднесуточная температура воздуха за 3 суток $t = -15^{\circ}$ С; площадь ледяного поля $\Omega = 100 \times 100 = 10^4$ м²; скорость ветра 1%-ной обеспеченности в период движения льда $W_{\rm M} = 30$ м/с; наблюдаются несмерзшиеся торосы.

Расчетные данные: расчетная толщина льда по п. 6.1, табл. 82(28)

$$h_{\pi} = 0.8 \cdot 0.5 = 0.4$$
 M;

расчетная скорость движения ледяного поля по п. 6.3

$$v_{\pi} = 0.03 \cdot 30 = 0.9 \text{ M/c};$$

предел прочности льда сжатию по табл. 81 (27)

$$R_{\rm c} = 105 \, {\rm tc}/{\rm m}^2;$$

предел прочности льда раздроблению (с учетом местного смятия) по формуле 150(116) и табл. 82(28) при $\frac{b}{h_{\pi}} = \frac{8}{0.4} = 20$, $k_j = 1,2$

 $R_{\rm p} = 1.2 \cdot 105 = 126 \ {\rm tc/M^2};$

коэффициенты формы опоры по табл. 83 (29) $m_j = 0.9; m_e = 2.4.$ Решение.

По формулам 151 (117) и 152 (118)

$$P_1 = 0.9 \cdot 126 \cdot 8 \cdot 0.4 = 363 \text{ tc},$$

 $P_2 = 0.4 \cdot 0.9 \cdot 0.4 \sqrt{2.4 \cdot 10^4 \cdot 126} = 250 \text{ rc.}$

Согласно п. 6.3 расчетная нагрузка принимается наименьшая. С учетом торисистости заданного района по п. 6.2

$$P_{\text{pacy}} = 250 \cdot 1,3 = 325 \text{ rc.}$$

Пример 34. Определить нагрузку от движущихся ледяных полей на массивный причал.

Исходные данные: район строительства — р. Кама; максимальная толщина льда 1 %-ной обеспеченности $h_t = 0.9$ м; протяженность причала B = 260 м; секции — b = 20 м; среднесуточная температура воздуха за 6 суток до ледохода $t = 0^{\circ}$ С; скорость движения ледяного поля $v_{\pi} = 1$ м/с; площадь ледяного поля $\Omega = 2 \cdot 10^4$ м²; угол подхода ледяных полей к фронту причала $\theta = 35^{\circ}$.

Расчетные данные: расчетная толщина льда по п. 6.1, табл. 82(28) $h_{\pi} = 0.8 \cdot 0.9 = 0.72$ м;

предел прочности льда сжатию по табл. 81 (27) Rc=45 тс/м².

Решение.

По формулам 153(119) и 154(120) с учетом движения ледяного поля под углом $\theta = 35^{\circ}$.

 $R_3 = 0.7 \cdot 1 \cdot 0.72 \sqrt{2 \cdot 10^4 \cdot 45} \cdot 0.575 = 275 \text{ tc},$

$$R_4 = 0.5 \cdot 45 \cdot 10 \cdot 0.72 = 164$$
 rc.

Согласно п. 6.3 расчетная нагрузка Ррасч=164 тс.

Пример 35. Определить нагрузку от движущихся ледяных полей на отдельно стоящую опору с наклонной поверхностью в зоне действия льда.

Исходные данные: район строительства — Охотское море; максимальная толщина льда 1%-ной обеспеченности $h_t=1,5$ м; соленость льда $S=2\%_0$; среднесуточная температура воздуха за 6 суток до действия льда на сооружения $t=-30^{\circ}$ С; обледенения опор нет; наблюдаются несмерзшиеся торосы; ширина опоры на уровне воздействия льда b==20 м; опора конусообразная с углом наклона режущей грани опоры к горизонту $\beta=45^{\circ}$.

Расчетные данные: расчетная толщина льда по п. 6.1, табл. 82(28)

$$h_{\rm A} = 0.8 \cdot 1.5 = 1.2$$
 M;

коэффициент торосистости согласно п. 6.2—1.5; предел прочности льда на сжатие при $t = -30^{\circ}$ С и $S = 2\%_{0}$ по табл. 81(27) $R_{c} = 135$ тс/м²; предел прочности льда на изгиб по формуле 149(115)

$$R_{\rm H} = 0.5 \cdot 135 = 67.5 \text{ tc/m}^2;$$

предел прочности льда на раздробление по формуле 150(116) и табл. 82(28) при $\frac{b}{h_s} = \frac{20}{1.2} = 16,7, k_j = 1,3$

$$R_{\rm p} = 1.3 \cdot 135 = 175 \text{ tc/m}^2;$$

по табл. 84 (30)

$$k_{\rm B} = \frac{1}{1} + \frac{0.05b}{h_{\rm R}} = 1 + \frac{0.05 \cdot 20}{1.2} = 1.83;$$

по табл. 85(31) при в = 45° m_t = 1;

по табл. 83 (29) для многогранника $m_j = 0.9$.

Решение.

Горизонтальная составляющая нагрузки по формулам 155(121) и 151(117) соответственно равна

$$P_x = 1.1,83.67,5.1,2^2 = 177$$
 rc;
 $P_1 = 0.9.175.20.1,2 = 3780$ rc.

Согласно п. 6.4 расчетная нагрузка с учетом коэффициента торосистости, равного 1,5,

$$P_x = 1.5 \cdot 177 = 266 \text{ rc}.$$

Вертикальная составляющая нагрузки по формуле 156(122)

$$P_z = \frac{266}{1} = 266$$
 rc.

Пример 36. Определить нагрузку от движущихся ледяных полей на откос из каменной наброски.

Исходные данные: район строительства — Финский залив; максимальная толщина льда 1%-ной обеспеченности $h_t = 1,0$ м; прочность льда сжатию $R_c = 45$ тс/м²; прочность льда изгибу $R_{\rm M} = 34$ тс/м²; угол заложения откоса $\beta = 26^{\circ}30'$; коэффициент заложения откоса $m_{\alpha} = 2$; каменная наброска с размерами камня >0,2 м.

Расчетные данные: расчетная толщина льда по п. 6.1, табл. 82(28)

$$h_{\pi} = 0.8 \cdot 1 = 0.8$$
 м;

коэффициент торосистости — согласно п. 6.2—1.3; по формуле 157 коэффициент $k_1 = 1 + 0.055 \cdot (10-2) = 1.44$; соответственно пояснениям к п. 6.4 коэффициент $k_2 = 1.5$; по табл. 85(31) при $\beta = 26^{\circ}30'$ коэффициент $m_t = = 0.54$; по табл. 84(30) на 1 м длины сооружения $k_B = 0.1$. Решение.

Горизонтальная составляющая нагрузки по формуле 155(121) и 154(120) с учетом шероховатости откоса согласно требованиям, приведенным в п. 6.4 и в пояснениях к нему,

$$\begin{split} P_{X} &= m_{l} k_{B} R_{H} h_{a}^{2} k_{1} k_{2} = 0.54 \cdot 0.1 \cdot 34 \cdot 0.8^{2} \cdot 1.44 \cdot 1.5 = 2.54 \text{ tc/m}; \\ P_{4} &= 0.5 \cdot 45 \cdot 1 \cdot 0.8 = 18 \text{ tc/m}. \end{split}$$

Согласно п. 6.4 расчетной принимается $P_x = 2,54$ тс/м.

Вертикальная составляющая нагрузки по формуле 156(122)

$$P_z = \frac{2,54}{0,54} = 4,7 \text{ tc/m}.$$

Пример 37. Определить нагрузку от движущихся ледяных полей на ряд вертикальных опор.

Исходные данные: район строительства — бассейн р. Волги; максимальная толщина льда 1%-ной обеспеченности $h_t = 0,5$ м; ширина опоры на уровне ледохода b = 6,0 м; расстояние между опорами l = 22,0 м; скорость течения воды $v_{\rm B} = 1,1$ м/с; площадь ледяного поля $\Omega = 3,75 \times 10^4$ м²; среднесуточная температура воздуха за 3 суток до периода воздействия льда $t = 0^{\circ}$ C; угол подхода ледяных полей к фронту сооружения $\theta = 50^{\circ}$.

Расчетные данные: расчетная толщина льда согласно п. 6.1, табл. 82(28) $h_{\pi} = 0.8 \cdot 0.5 = 0.4$ м;

предел прочности льда сжатию по табл. 81(27) при $t=0^{\circ}$ С $R_{c}=45$ тс/м²; предел прочности льда раздроблению по формуле 150(116) и табл. 82(28):

при
$$\frac{b}{h_{\pi}} = \frac{6}{0.4} = 15$$
, $k_j = 1.35$
 $R_p = 1.35 \cdot 45, 0 = 60.7 \text{ тс/м}^2$;

скорость движения ледяного поля $v_a = 1,1$ м/с; при угле подхода ледяного поля $\theta = 50^{\circ}$ опоры врезаются ребром; поэтому по табл. 83 (29) принимаем: $m_j = 0,69$; $m_s = 1,0$; отношение $\frac{b}{l} = \frac{6}{22} = 0,27$; наибольшая ширина опоры при подходе ледяного поля под углом к фронту опор:

$$b_{\text{pacy}} = \sqrt{2b^2} = 8.5 \text{ M}.$$

Решение.

Нагрузка на первую по течению опору по формулам 151(117) и 152(118) соответственно равна:

$$P_1 = 0.69 \cdot 60.7 \cdot 8.5 \cdot 0.4 = 143 \text{ rc;}$$

$$P_2 = 0.4 \cdot 1.1 \cdot 0.4 \sqrt{1.0 \cdot 3.75 \cdot 10^4 \cdot 60.7} = 280 \text{ rc.}$$

Согласно п. 6.3 расчетной нагрузкой принимаем наименьшую $P_{pacy} = = 143$ тс.

Для остальных опор, поскольку отношение $\frac{b}{l} = 0,27$ находится в пределах от 0,1 до 0,9, нагрузка определяется по формулам 158(123) и 151(117):

$$P_5 = 0.5 \cdot 0.69 \cdot 45 \cdot 8.5 \cdot 0.4 (2.5 - 1.5 \cdot 0.27) = 111 \text{ rc};$$

$$P_1 = 0.56 \cdot 60.7 \cdot 8.5 \cdot 0.4 = 122 \text{ rc}.$$

Согласно п. 6.5 расчетной нагрузкой принимаем Ррасч=111 тс.

Пример 38. Определить нагрузку от движущихся ледяных полей на отдельно стоящую сквозную опору с вертикальными поверхностями.

Исходные данные: район строительства — Охотское море; максимальная толщина льда 1 %-ной обеспеченности $h_t = 1,2$ м; среднесуточная температура воздуха за 6 суток до действия льда на сооружения t = = —3° С; площадь ледяного поля $\Omega = 100 \times 100 = 1 \cdot 10^4$ м²; скорость движения ледяного поля $v_{\pi} = 0,4$ м/с; соленость льда $S = 2\%_0$; угол подхода ледяного поля к передней грани опоры $\theta = 90^\circ$.

Опора возводится в виде высокого свайного ростверка квадратного сечения в плане; b = 20,8 м. Сваи спаренные из металлического шпунта типа Ларсен IV, жестко заделанные в плиту ростверка. Число свай n = 36. Высота сооружения от подошвы ростверка до поверхности дна $l_0 = 10$ м, глубина погружения сваи в грунт t=6 м, глубина ее заделки в грунте $t_{38д}=2,4$ м, наибольший размер сечения сваи $d \approx 0,4$ м; модуль упругости стали $E=2,1\cdot10^7$ тс/м²; момент инерции сваи $I=780\times \times 10^{-6}$ м⁴.

Расчетные данные: расчетная толщина льда по п. 6.1, табл. 82(28) $h_{\pi} = 0.8 \cdot 1.2 = 0.96$ м;

предел прочности льда сжатию по табл. 81 (27) $R_c = 65 \text{ тс/m}^2$; предел прочности льда раздроблению по формуле 150 (116) и табл. 82 (28) при $\frac{b}{h_{\pi}} = \frac{20.8}{0.96} = 20 R_p = 1.2 \cdot 65 = 78 \text{ тс/m}^2$; коэффициенты формы опоры по табл. 83 (29) $m_e = 2.7$; $m_j = 1.0$; расчетная длина сваи $l = l_0 + t_{3ag} = 10 + 2.4 = 12.4 \text{ м}$;

коэффициент упругой податливости опоры

$$k_y = \frac{l^3}{12Eln} = \frac{12,4^3}{12\cdot 2,1\cdot 10^7\cdot 780\cdot 10^{-6}\cdot 36} = 2,70\cdot 10^{-4} \text{ m/tc.}$$

Решение.

По формулам 159(124) и 151(117) соответственно получаем:

$$P_{\rm c} = 0.3 \cdot 0.4 \cdot 0.96 \sqrt{\frac{1 \cdot 10^4}{2.70 \cdot 10^{-4} \cdot 0.96 + \frac{0.2}{65 \cdot 2.7}}} = 311 \text{ rc};$$

 $P_1 = 1,0.78 \cdot 20,8 \cdot 0,96 = 1560$ rc.

Согласно п. 6.5 расчетной натрузкой принимаем наименьшую *P*_{расч}=311 тс.

Пример 39. Опеделить нагрузку от остановившегося ледяного поля, наваливающегося под действием ветра и течения на сооружение.

Исходные данные: район строительства — р. Нева; максимальная толщина льда 1%-ной обеспеченности $h_t = 1,0$ м; площадь ледяного поля $\Omega = 8 \cdot 10^4$ м²; максимальная скорость ветра 1%-ной обеспеченности в период ледохода $W_{\rm M} = 10$ м/с; скорость движения воды подо льдом $v_{\rm B} = 0,8$ м/с; ширина реки $B_{\rm P} = 600$ м; уклон поверхности потока $i = 2 \cdot 10^{-4}$.

Расчетные данные: расчетная толщина льда согласно п. 6.1, табл. 82 (28) $h_{\pi} = 0.8 \cdot 1 = 0.8$ м; средняя длина ледяного поля по направлению потока, согласно п. 6.6, принимается равной $L_{\pi} = 3B_{p} = 3 \times 600 = 1800$ м.

Решение.

Удельные составляющие общей нагрузки по формулам 161 (126) — 164 (129) равны:

$$p_{1} = 5 \cdot 10^{-4} \cdot 0.8^{2} = 3.2 \cdot 10^{-4} \text{ Tc/M}^{2};$$

$$p_{2} = 0.05 \frac{0.8 \cdot 0.8^{2}}{1800} = 10^{-5} \text{ Tc/M}^{2};$$

$$p_{3} = 0.92 \cdot 0.8 \cdot 2 \cdot 10^{-4} = 1.5 \cdot 10^{-4} \text{ Tc/M}^{2};$$

$$p_{4} = 2 \cdot 10^{-6} \cdot 10^{2} = 2 \cdot 10^{-4} \text{ Tc/M}^{2}.$$

По формуле 160(125) общая нагрузка

 $P_7 = (3,2+0,1+1,5+2) \cdot 8 \cdot 10^4 \cdot 10^{-4} = 54,6 \text{ rc.}$

Нагрузки и воздействия на сооружения от сплошного ледяного покрова при его температурном расширении

6.7. Нагрузку q, тс/м, на единицу длины сооружения от воздействия сплошного ледяного покрова соленостью менее 2% при его температурном расширении необходимо определять по формуле

$$q = h_l k_L p,$$
 165 (130)

где h_t — максимальная толщина ледяного покрова, м, обеспеченностью 1%; k_L — коэффициент, принимаемый по табл. 86 (32); p — давление за счет упругой и пластической деформации, тс/м², при температурном расширении льда, определяемое по формуле

$$p = 5 + 11 \cdot 10^{-5} v_{\mu} \varphi; \qquad 166 (131)$$

у — максимальная скорость повышения температуры воздуха, $^{\circ}C/4$, за время т, ч (за 6 ч при 4 срочных наблюдениях); μ — коэффициент вязкости льда, тс ч/м², определяемый по формулам:

при
$$t_{\pi} \ge -20^{\circ}$$
С $\mu = (3, 3 - 0, 28t_{\pi} + 0, 083t_{\pi}^2) \cdot 10^4$; 167 (132)

при
$$t_a < -20^{\circ}$$
С $\mu = (3,3 - 1,85t_a) \cdot 10^4$; 168 (133)

 t_{π} — температура льда, °С, определяемая по формуле

$$t_{\rm H} = t_{\rm H} \eta_0 + \frac{\nu \tau}{2} \dot{\psi};$$
 169 (134)

 $t_{\rm H}$ — начальная температура воздуха, °C, от которой начинается ее повышение; η_0 — относительная толщина ледяного покрова с учетом влияния снега, определяемая по формуле

$$\eta_0 = \frac{h_t}{h_{\rm H}};$$
 170 (135)

 $h_{\rm ff}$ — приведенная толщина ледяного покрова, м, определяемая по формуле

$$h_{\rm fl} = h_t + 1,43h_{\rm c} + \frac{2}{\alpha_{\rm B}};$$
 171 (136)

 h_c — наименьшая толщина снежного покрова за расчетный период, м, определяемая по данным натурных наблюдений, а при их отсутствии необходимо принимать $h_c = 0$; $a_B -$ коэффициент теплоотдачи от воздуха и поверхности снежного покрова, ккал/ч м², принимаемый равным 20 $\sqrt{W} + 0.3$ — при наличии снега, или 5 $\sqrt{W} + 0.3$ — при отсутствии снега;

Рис. 107 (35). Графики значений коэффициента 4.

W — средняя скорость ветра, м/с; ψ — безразмерный коэффициент, принимаемый по графикам рис. 107 (35) при заданных значениях относительной толщины ледяного покрова η_0 и безразмерной величины $F_0 = \frac{4 \cdot 10^{-3} \tau}{h_{\Pi}^2}$, где τ в часах и h_{Π} в метрах; φ — коэффициент, принимаемый по графикам рис. 108 (36).

Таблица 86 (32)

Протяженность ледя- ного покрова L, м	50	70	90	120	150 и более
Коэффициент k _L	1	0,9	0,8	0,7	0,6

6.8. При определении нагрузки *q*, тс/м, на единицу длины сооружения от воздействия сплошного ледяного покрова при его температурном расширении необходимо учитывать следующие требования:

за расчетную нагрузку должно приниматься наибольшее из значений *q*, определенных согласно требованиям п. 6.7 настоящей главы в случаях, когда из имеющегося ряда наблюдений температуры воздуха приняты расчетные периоды либо с минимальной температурой воздуха и соответствующим ей градиентом, либо с максимальным градиентом и соответствующей ему температурой воздуха;

нагрузку q при наклоне грани сооружения к горизонту менее 40 град допускается не учитывать;

нагрузку q при солености льда $S \ge 2\%_0$ необходимо определять по формуле

$$q = 10h_i k_L,$$
 172(137)

где h_t и k_L — обозначения те же, что в п. 6.7 настоящей главы.

Рис. 108 (36). Графики значений коэффициента ф.

Пример 40. Определить нагрузку на вертикальную стену от воздействия сплошного ледяного покрова при его температурном расширении.

Исходные данные: толщина льда обеспеченностью $1\%h_t=0.9$ м; протяженность ледяного покрова L=120 м; первый расчетный период: начальная температура воздуха $t_{\rm H}=-.37^{\circ}$ С; соответствующая этому периоду максимальная скорость повышения температуры воздуха v= $=2.6^{\circ}$ С/ч; средняя скорость ветра W=5 м/с; наименьшая толщина слоя снега на льду $h_c=0.1$ м; второй расчетный период: минимальная температура воздуха $t_{\rm H}=-.30^{\circ}$ С; соответствующая этому периоду максимальная скорость повышения температуры воздуха $v=3.8^{\circ}$ С/ч; средняя скорость ветра W=8 м/с; наименьшая толщина слоя снега на льду $h_c=0.1$ м.

Расчетные данные.

Для первого расчетного периода: коэффициент теплоотдачи от воздуха к поверхности снежного покрова по п. 6.7

$$a_{\rm B} = 20 \sqrt{5+0.3} = 46.0 \, \text{ккал/ч·м^2}.$$

приведенная толщина ледяного покрова по формуле 171 (136)

$$h_{\rm fl} = 0.9 + 1.43 \cdot 0.1 + \frac{2}{46.0} = 1.09$$
 M;

относительная толщина ледяного покрова по формуле 170(135)

$$\eta_0 = \frac{0.9}{1.09} = 0.82;$$

критерий Фурье

$$F_0 = \frac{4 \cdot 10^{-3} \cdot 6}{1,09^2} = 0,02;$$

по графику, приведенному на рис. 107 (35), $\psi = 0,2$; по графику, приведенному на рис. 108 (36), $\varphi = 0,1$; температура льда по формуле 169 (134)

$$t_{\rm A} = -37.0,82 + \frac{2,6.6}{2}.0,2 = -28,8^{\circ}{\rm C};$$

коэффициент вязкости льда по формуле 168(133)

 $\mu = 3,3 - 1,85 \cdot (-28,8) \cdot 10^4 = 50,5 \cdot 10^4$ тс $\cdot 4/M^2$; $k_I = 0,7$ по табл. 86 (32) при L = 120 м.

Для второго расчетного периода: коэффициент теплоотдачи от воздуха к поверхности ледяного покрова

$$\alpha_{\rm B} = 20 \sqrt{8 + 0.3} = 57.7$$
 ккал/м·м²;

приведенная толщина ледяного покрова по формуле 171(136)

$$h_{\rm m} = 0.9 + 1.43 \cdot 0.1 + \frac{2}{57.7} = 1.08 \text{ m}.$$

относительная толщина ледяного покрова

$$\eta_0 = \frac{0.9}{1.08} = 0.83;$$

 $F_0 = \frac{4 \cdot 10^{-3} \cdot 6}{1.08^2} = 0.021;$

 $\psi = 0.23$ — с графика, приведенного на рис. 107 (35); $\varphi = 0.11$ — с графика, приведенного на рис. 108 (36); температура льда по формуле 169 (134)

$$t_{\pi} = -30^{\circ}\text{C} \cdot 0.83 + \frac{3.8 \cdot 6}{2} \cdot 0.23 = -22.3^{\circ}\text{C};$$

коэффициент вязкости льда по формуле 168(133)

$$= [3,3-1,85(-22,3)] \cdot 10^4 = 44,5 \cdot 10^4 \text{ tc} \cdot 4/M^2;$$

k, = 0,7 по табл. 86 (32).

j.

Решение.

Нагрузку определяем по формулам 165(130), 166(131). Первый период:

$$p = 5 + 11 \cdot 10^{-5} \cdot 2.6 \cdot 56.5 \cdot 10^4 \cdot 0.1 = 21.1 \text{ tc/m}^2$$

 $q = 0.9 \cdot 0.7 \cdot 21.1 = 13.3 \text{ tc/m}.$

Второй период:

$$p = 5 + 11 \cdot 10^{-5} \cdot 3.8 \cdot 44.5 \cdot 10^4 \cdot 0.11 = 25.5 \text{ tc/m}^2;$$

$$q = 0.9 \cdot 0.7 \cdot 25.5 = 16.1 \text{ tc/m}.$$

Согласно п. 6.8 расчетной нагрузкой принимается наибольшее значение q = 16,1 тс/м.

Нагрузки на сооружения от зажорных масс льда

6.9. Нагрузку P₈, тс, при прорезании опорой зажорной массы льда необходимо определять по формуле

$$P_8 = 12m_i bh_3,$$
 173 (138)

где m_j и b — обозначения те же, что в пп. 6.1 и 6.3 настоящей главы;

 h_3 — расчетная толщина зажора, м, принимаемая по данным натурных наблюдений. Допускается принимать h_3 по ледотермическому режиму прилегающих участков реки, но не более 80% от средней глубины потока при расходе воды зажорного периода, **6.10.** Нагрузку P_9 , тс, при навале зажорных масс льда на сооружение перпендикулярно его фронту необходимо определять по формуле

$$P_9 = BL_3 (4p_1 + p_2 + p_3 + p_4), 174 (139)$$

где В — длина участка сооружения на уровне воздействия зажорных масс, м; L_3 — длина участка зажора, принимаемая равной полуторной ширине реки в створе сооружения, м;

*p*₁, *p*₂, *p*₃, *p*₄ — величины давления льда, определяемые по формулам 161 (126)—164(129) п. 6.6 настоящей главы; при этом толщину зажора необходимо принимать согласно требованиям п. 6.9 настоящей главы. Скорость течения воды и уклон водной поверхности в месте образования зажора должны приниматься по данным натурных наблюдений, а при их отсутствии—по аналогии с данными натурных наблюдений для смежных районов.

6.11. Нагрузку q_3 , тс/м, от навала зажорных масс льда на единицу длины сооружения, расположенного параллельно направлению течения (а также на берега) необходимо определять по формуле

$$q_3 = \xi \frac{P_9}{B},$$
 175 (140)

где **5** — коэффициент, принимаемый равным для песчаных берегов — 0,7; глинистых — 0,8; скальных — 0,9;

P₉ и В — обозначения те же, что в п. 6.10 настоящей главы.

Пример 41. Определить нагрузку от действия зажорных масс льда на опору моста.

Исходные данные: район сооружения — бассейн р. Лены; берега песчаные; форма опоры в плане — треугольник с углом заострения 60°; ширина опоры на уровне воздействия зажорных масс льда B=4,3 м; ширина реки $B_p=400$ м; средняя глубина потока при расходе воды зажорного периода H=8 м; скорость течения воды в подзажорном сечении $v_{\rm B}=$ =2,1 м/с; максимальная скорость ветра в период воздействия зажорных масс льда обеспеченностью 1 % $W_{\rm M}=23$ м/с; уклон поверхности потока в подзажорном сечении i=0,003.

Расчетные данные: толщина зажора согласно п. 6.9 принимается равной.

$h_3 = 0.8 \cdot H = 0.8 \cdot 8 = 6.4$ M;

коэффициент формы опоры по табл. 83 (29) $m_j = 0,59$; длина участка зажора согласно п. 6.10

$$L_3 = 1,5 \cdot 400 = 600 \text{ M};$$

по формулам 161 (126) - 164 (129):

$$p_1 = 5 \cdot 10^{-4} \cdot 2, 1^2 = 2, 2 \cdot 10^{-3} \text{ Tc/M}^2;$$

$$p_2 = 0,05 \frac{6,4 \cdot 2,1^2}{600} = 2,3 \cdot 10^{-3} \text{ Tc/M}^2;$$

$$p_3 = 0,92 \cdot 6,4 \cdot 0,003 = 17,6 \cdot 10^{-3} \text{ Tc/M}^2;$$

$$p_4 = 2 \cdot 10^{-6} \cdot 23^2 = 1,1 \cdot 10^{-3} \text{ Tc/M}^2;$$

$$\xi = 0,7 \text{ no } n. 6.11.$$

Решение.

Нагрузка, возникающая при прорезании опоры моста зажорной массой, по формуле 173 (138)

$$P_8 = 12.0,59.4,3.6,4 = 195$$
 rc.

Нагрузка при навале зажорных масс на опору перпендикулярно направлению течения по формуле 174 (139)

$$P_9 = 4,3.600 (4.2,2.10^{-3} + 2,3.10^{-3} + 17,6.10^{-3} + 1,1.10^{-3}) = 77 \text{ tc.}$$

То же параллельно направлению течения по формуле 175(140)

$$q_3 = 0.7 \frac{77}{4.3} = 12.5 \text{ tc/m}.$$

Нагрузки от примерзшего к сооружению ледяного покрова при изменении уровня воды

6.12. Вертикальную нагрузку от примерзшего к сооружению ледяного покрова *P*₁₀, тс, при изменении уровня воды (рис. 109(37)) необходимо определять по формуле

$$P_{10} = 20Bu\tau_1 \sqrt[4]{\frac{\bar{h}_i^3}{\Phi}}, \qquad 176 (141)$$

где B — длина участка сооружения на уровне действия льда, м; u — скорость понижения или повышения уровня воды, м/ч; τ_1 — время, в течение которого происходит деформация ледяного покрова при понижении или повышении уровня воды, ч; Φ — безразмерная функция времени, определяемая по формуле

$$\Phi = 1 + \frac{3 \cdot 10^4}{\mu} [\tau_1 + 50 (1 - e^{-0.4\tau_1})]; \qquad 177 (142)$$

h_t и µ — обозначения те же, что в п. 6.7 настоящей главы.

Скорость понижения и повы-

шения уровня воды
$$u = \frac{w}{\tau_1}$$
, где

w — наибольшая величина повышения или понижения уровня воды, м, наблюдаемая при максимальных и близких к ним толщинах льда и определяемая по многолетним данным. Диапазон рассматриваемых толщин льда в каждом году должен быть не менее $(0,75 \div 1,0)h_t$. Здесь и в формуле 176(141) следует принимать $\tau_1 \leqslant \tau_2$, где обозначение τ_2 пояснено в п. 6.13.

6.13. Нагрузку в виде изгибающего момента *M*, тс · м, воспринимаемую сооружением от примерзшего ледяного покрова при понижении или повышении уровня воды (рис. 109 (37)), необходимо определять по формуле

Рис. 109 (37). Схемы к определению нагрузок от примерзшего к сооружению ледяного покрова при изменении уровня воды (УВ)

а-при понижении УВ; б-при повышении УВ. УВЛ-уровень воды при ледоставе.

$$M = 200B u\tau_1 \sqrt{\frac{\bar{k}_l^3}{\Phi}}, \qquad 178 (143)$$

при этом предельное значение изгибающего момента M_{np} , тс · м, не должно быть более определяемого по формуле

$$M_{\rm np} = \frac{Bh_t^2 R_{\rm p}' R_{\rm c}'}{6 \left(R_{\rm p}' + R_{\rm c}'\right)} \left(1 + 2k_E\right), \qquad 179 \,(144)$$

где R_p' и R_c' — пределы прочности при растяжении и сжатии деформирующегося ледяного покрова, тс/м², вычисляемые по формулам:

$$R_{p}' = R_{Tp} e^{-\frac{400\tau_{2}}{\mu}};$$
180 (145)

$$R_{\rm c}' = R_{\rm rc} \, v^{\mu};$$
 181 (146)

*R*_{тр} и *R*_{тс} — средние значения пределов текучести льда соответственно на растяжение и сжатие, тс/м², определяемые по опытным данным, а при их отсутствии допускается принимать по табл. 87 (33);

т₂ — время, ч, в течение которого уровень воды изменяется на величину, равную толщине льда;

k_E — коэффициент принимаемый в зависимости от величины е ^µ, равным

161 .

400rg	
e µ	k _E
0,8	1
0,85	1,5
0,9 и более	2

В, h_t, µ — обозначения те же, что в п. 6.7 настоящей главы.

Таблица 87 (33)

	Пределы текучести льда				
Температура льда <i>t_л</i> , °С	на растяжение <i>R</i> _{тр} , тс/м ²	на сжатие <i>R</i> _{тс} , тс/м ²			
	Верхняя часть л	едяного покрова			
от 0 до — 2	70	180			
от — 3 до — 10	80	250			
от — 11 до — 20	100	280			
	Нижняя часть л	едяного покрова			
от 0 до — 2	50	120			
Обозначение t _л , °C, то же, что и в п. 6.7 настоящей главы.					

Определяя величины $R_{\rm TP}$ и $R_{\rm TC}$ по таблице 87 (33), следует температуру льда t_{π} при подъеме уровня воды приравнивать нулю, а при опускании уровня воды — принимать $t_{\pi} = t_c \eta_0$, где t_c — среднеарифметическая из среднесуточных отрицательных температур воздуха за период изменения уровня воды; η_0 — определяется по формулам 170(135) и 171(136).

6.14. Вертикальную нагрузку Р11, тс, на отдельно стоящую опору (или свайный куст) от примерзшего к сооружению ледяного покрова при изменении уровня воды следует определять по формуле

$$P_{11} = k_{\rm c} R_{\rm H} h_t^2, \qquad 182(147)$$

где R_и, h_t — обозначения те же, что в п. 6.1 и п. 6.7 настоящей главы; k_c — безразмерный коэффициент, принимаемый по табл. 88(34).

Таблица 88 (34)

Значение $\frac{d}{h_i}$	0,1	0,2	0,5	1	2	3	5	10	20
Коэффициент k _c	0,16	0,18	0,22	0,26	0,31	0,36	0,43	0,63	1,11

Обозначение d — диаметр опоры (или свайного куста), м

Примечание. При прямоугольной форме опоры в плане со сторонами а и b, м, допускается ее "диаметр" принимать равным $d \sqrt{ab}$, м.

При расстоянии между опорами менее 20 ht нагрузку от примерзшего к сооружению ледяного покрова необходимо определять согласно требованиям пп. 6.12 и 6.13 настоящей главы.

1. Нагрузку от действия примерзшего льда можно не учитывать, когда изменение уровня воды на величину, равную толщине льда, происходит в течение месяца и более.

2. Формула 182(147) может применяться для свайного куста, в котором расстояние между сваями не превышает одного метра; в противном случае следует рассматривать каждую сваю как отдельную опору. Пример 42. Определить ледовую нагрузку на вертикальную стенку

при повышении уровня воды.

Исходные данные: максимальная толщина ледяного покрова 1%-ной обеспеченности $h_i = 1,0$ м; наибольшая величина повышения уровня w = 1,0 м; соответствующий величине w = 1,0 м период времени $\tau_1 = 200$ ч; среднеарифметическая из среднесуточных отрицательных температур воздуха за период повышения уровня воды $t_c = -6^\circ$ С; наименьшая толщина слоя снега на льду за расчетный период $h_c = 0,1$ м; средняя скорость ветра W = 9 м/с.

Расчетные данные:

скорость повышения уровня воды

$$u = \frac{1.0}{200} = 0.005 \text{ M/H};$$

относительная толщина ледяного покрова по формулам 170 (135) и 171 (136)

$$\eta_0 = \frac{1}{1 + 1,43 \cdot 0,1 + \frac{2}{20 \sqrt{9 + 0,3}}} = 0.85;$$

температура ледяного покрова

$$t_{\pi} = -6 \cdot 0,85 = -5,1^{\circ} \text{C};$$

коэффициент вязкости льда при $t_{\pi} = -5,1^{\circ}$ С по формуле 167 (132)

$$\mu = [3,3 - 0,28 \cdot (-5,1) + 0,083 \cdot (-5,1)^2] \cdot 10^4 = 6,8 \cdot 10^4 \text{ Tc} \cdot 4/\text{M}^2$$

время, в течение которого уровень воды изменяется на величину, равную толщине льда,

$$x_2 = \frac{h_t}{u} = \frac{1}{0,005} = 200$$
 ч;

принимаем, соответственно пояснениям к п. 6.12, $\tau_1 = \tau_2 = 200$ ч; безразмерная функция времени Ф по формуле 177 (142) при $\tau_1 = 200$ ч

$$\Phi = 1 + \frac{3 \cdot 10^4}{6.8 \cdot 10^4} \cdot [200 + 50 (1 - e^{-0.4 \cdot 200})] = 110;$$

при повышении уровня воды, по табл. 87 (33) при температуре, равной нулю,

$$R_{\rm TP} = 50 \ {\rm tc/m^2}; \ R_{\rm Tc} = 120 \ {\rm tc/m^2};$$

коэффициент $k_E = 1$ при

$$e^{-\frac{400\tau_2}{\mu}} = e^{-\frac{400\cdot200}{6,8\cdot10^4}} = 0.31 < 0.85$$

пределы прочности Rp' и Rc' по формулам 180 (145) и 181 (146)

$$R_{p}' = 50.0,31 = 15 \text{ tc/m}^2;$$

 $R_{c}' = 120.0,31 = 37 \text{ tc/m}^2.$

Решение

Вертикальная нагрузка по формуле 176 (141) при В = 1 м

$$P_{10} = 20 \cdot 1 \cdot 0,005 \cdot 200 \sqrt[4]{\frac{13}{110}} = 6,2 \text{ rc.}$$

Величина изгибающего момента по формулам 178 (143), 179 (144)

$$M = 200 \cdot 1 \cdot 0,005 \cdot 200 \sqrt{\frac{1^3}{110}} = 19 \text{ tc} \cdot \text{m};$$
$$M_{\text{np}} = \frac{1 \cdot 15 \cdot 37}{6 (15 + 37)} \cdot (1 + 2, 1) = 5,3 \text{ tc} \cdot \text{m}.$$

Согласно п. 6.13 в качестве расчетного значения принимается M = = 5,3 тс · м.

Пример 43. Определить вертикальную нагрузку на отдельно стоящую прямоугольную опору от примерзшего к сооружению ледяного покрова при изменении горизонта воды. Исходные данные: толщина льда 1%-ной обеспеченности $h_t = -0.5$ м; соленость льда $S < 1\%_0$; среднеарифметическая из среднесуточных температур воздуха за период изменения горизонта воды $t_c = -20^{\circ}$ C; размер прямоугольной опоры 6×5 м.

Расчетные данные:

предел прочности льда на сжатие по табл. 81 (27)

$$R_{\rm c} = 130 \ {\rm tc}/{\rm M}^2;$$

предел прочности льда на изгиб по формуле 148(114).

$$R_{\mu} = \frac{3}{4} \cdot 130 = 97,5 \text{ tc/m}^2;$$

«диаметр» прямоугольной опоры согласно примечанию к табл. 88(34)

$$d = \sqrt{6 \cdot 5} = 5,5$$
 M;

безразмерный коэффициент kc=0,68 по табл. 88(34) при

$$\frac{d}{h_t} = \frac{5,5}{0,5} = 11;$$

Решение.

Нагрузка определяется по формуле 182(147):

 $P_{11} = 0,68 \cdot 97,5 \cdot 0,5^2 = 17$ тс.

Приложение 1

элементы волн на открытых и огражденных акваториях

1. При определении элементов волн на открытых и огражденных акваториях необходимо учитывать следующие волнообразующие факторы: скорость ветра (ее величину и направление), продолжительность непрерывного действия ветра над водной поверхностью, размеры и конфигура-

Наименование гидротехни- ческих сооружений	Расчетная обеспечен- ность вы- сот волн в системе, %
Сооружения верти- кального профиля Сквозные сооружения и обтекаемые преграды	1
класса: I II III, IV Берегоукрепительные сооружения класса	1 5 13
II III, IV Сооружения откосно- го профиля с креплени- ем.	1 5
бетонными плитами каменной наброской	$\frac{1}{2}$
Примечания: 1. При лении нагрузок на сооруж обходимо принимать выс ны заданной обеспеченно длину волны в пределах до 1,4 $\overline{\lambda}$, соответствующук мальному волновому возд 2. Расчетную обеспеч волн в системе необходи нимать: при определении защ щенности портовых а ваторий лри определении нака волн	а опреде- сения не- оту вол- ости h_i и от $0,8\lambda$ о макси- ействию. ченность имо при- и- к- . 5% та . 1% тных от- ний, воз- аториях, обеспе- системе нежащем

Таблица 89(35)

цию охваченной ветром акватории, рельеф дна и глубину водоема с учетом колебаний уровня воды.

2. Расчетные уровни воды и характеристики ветра необходимо определять по результатам статистической обработки данных многолетних (не менее 25 лет) рядов наблюдений в безледные сезоны, при этом расчетные уровни воды должны определяться с учетом приливо-отливных, сгонно-нагонных, сезонных и годовых колебаний уровней.

Таблица 90 (36)

Наименование берегоукрепи- тельных сооружений	Обесп четных %, пр:	еченност с уровне и классе жений	ь рас- й воды, соору-
	11	ш	IV
1. Подпорные гравита- ционные стены (волно-			
защитные)	1	25	50
2. Буны и подводные волноломы 3. Берегоукрепитель-		_	50
ные сооружения откос- ного профиля (волноза-	0.1	0.5	1
4. Искусственные пля-	0,1	0,0	1
жи: a) без сооружений б) с сооружениями		-	1
(буны, подводные вол- ноломы)		-	50

Примечания: 1. Для берегоукрепительных сооружений II и III классов, а также IV класса (пп. 3, 4а) обеспеченность расчетных уровней необходимо принимать по наивысшим годовым уровням.

2. Для берегоукрепительных сооружений IV класса (пп. 1, 2, 46) обеспеченность расчетных уровней необходимо принимать по среднегодовым уровням. 3. Расчеты элементов волн необходимо производить с учетом деления водоема на следующие зоны по глубине:

глубоководная — с глубиной $H > 0.5 \overline{\lambda}_{r\pi}$, где дно не влияет на основные характеристики волн:

мелководная — с глубиной $0.5 \overline{\lambda}_{r\pi} \ge H > H_{\kappa p}$, где дно оказывает влияние на развитие волн и на основные их характеристики;

прибойная — с глубиной от *Н*_{кр} до *Н*_{кп}, в пределах которой начинается и завершается разрушение волн;

приурезовая — с глубиной менее *Н*ип, в пределах которой поток от разрушенных волн периодически накатывается на берег.

4. При определении устойчивости и прочности гидротехнических сооружений и их элементов расчетную обеспеченность высот волн в системе необходимо принимать по табл. 89(35).

Расчетные уровни воды

5. Высоту ветрового нагона Δh , м, следует, как правило, принимать по данным натурных наблюдений, а при их отсутствии (без учета конфигурации береговой линии и рельефа дна) допускается определять по формуле

$$\Delta h = 2 \cdot 10^{-6} \frac{W^2 X}{g/I} \cos \alpha_{\rm B}, \qquad 183 \, (148)$$

где α_в — угол между продольной осью водоема и направлением ветра, град; X — протяженность охваченной ветром акватории, м.

6. Максимальный расчетный уровень воды для определения высотных отметок сквозных сооружений на открытых акваториях необходимо принимать для сооружений I и II классов с обеспеченностью 5%, а для III и IV классов — 10%.

При проектировании берегоукрепительных сооружений обеспеченность расчетных уровней воды необходимо принимать по табл. 90 (36).

1. Обеспеченность наивысших годовых и среднегодовых уровней следует определять по формуле:

$$F_n = \frac{n - 0.3}{N + 0.4} \cdot 100 \,\%, \tag{184}$$

где *п* — номер члена ряда, расположенного в порядке убывання его членов; *N* — общее число членов ряда.

2. Режимные функции, по которым определяют максимальный расчетный уровень, строят по ряду наблюдений наивысших годовых и среднегодовых уровней (η, м) за период не менее 25 лет.

3. Формулу 183(148) рекомендуется применять, главным образом, для замкнутых водоемов (озер, водохранилищ и т. п.).

4. В условиях, не оговоренных в настоящей главе СНиП, расчетные уровни воды следует принимать на основе соответствующих обоснований.

Пример 44. Определить высоту ветрового нагона Δh для водоема с горизонтальным дном при скорости ветра W = 30 м/с и разгоне X = 10 км. Глубина водоема H = 10 м. Водоем замкнутый, угол между продольной осью водоема и направлением ветра $\alpha_{\rm B} = 30$ град.

Решение.

По формуле 183(148) высота ветрового нагона

$$\Delta h = 2 \cdot 10^{-6} \frac{.30^2 \cdot 10^4}{.981 \cdot 10} \cdot 0,866 = 0,16 \text{ M}.$$

Пример 45. Определить расчетный уровень для укрепления берега бунами (IV класс капитальности) и подпорной гравитационной (волноотбойной) стеной (II класс капитальности). Период наблюдений над уровнем N = 25 лет. Исходные данные представлены в табл. 91 (столбцы 1—3).

Год

1

1967

1968

1969

1970

1971

1972

0,26

0.16

-0,16

-0,23

-0.24

Уровн	н, η, м	Уровни в порядке убывания							
средне- годовые	наивысщие годовые	год	средне- годовые	год	наивысшие годовые				
2	3	4	5	6	7				
$\begin{array}{c} -0.49 \\ -0.44 \\ -0.26 \\ -0.17 \\ -0.23 \\ -0.18 \\ -0.33 \\ -0.23 \\ -0.26 \\ -0.32 \\ -0.21 \\ -0.24 \\ -0.25 \\ -0.26 \\ -0.28 \\ -0.21 \\ -0.28 \\ -0.21 \\ -0.29 \\$	$\begin{array}{c} -0,09\\ -0,09\\ 0,15\\ 0,42\\ 0,52\\ 0,39\\ -0,01\\ 0,11\\ 0,06\\ -0,08\\ 0,21\\ 0,44\\ 0,4\\ 0,01\\ 0,09\\ 0,09\\ 0,09\\ 0,17\\ 0,43\\ 0,47\\ \end{array}$	1969 1970 1951 1953 1965 1963 1963 1971 1955 1952 1959 1967 1972 1960 1950 1956 1956 1961 1968	$\begin{array}{c} -0,16\\ -0,16\\ -0,17\\ -0,18\\ -0,21\\ -0,21\\ -0,23\\ -0,23\\ -0,23\\ -0,23\\ -0,23\\ -0,24\\ -0,24\\ -0,24\\ -0,24\\ -0,26\\ -0,26\\ -0,26\\ -0,26\\ -0,26\\ -0,26\\ -0,29\\ \end{array}$	1970 1969 1971 1952 1968 1967 1966 1959 1955 1951 1960 1953 1972 1958 1964 1950 1955 1962	$\begin{array}{c} 0.76\\ 0.75\\ 0.54\\ 0.52\\ 0.52\\ 0.51\\ 0.47\\ 0.44\\ 0.43\\ 0.42\\ 0.4\\ 0.39\\ 0.34\\ 0.21\\ 0.17\\ 0.15\\ 0.11\\ 0.09\\ 0.90\\ \end{array}$				
-0,24	0,51	1964	0,28	1956	0,05				

Таблица 91

0,01

-0,01

-0,08

0,09

-0,09

Решение. Согласно требованиям, приведенным 6 в Π. (табл. 90 (36)), для бун необходимо принимать отметки уровня с обеспе-ченностью 50% по среднегодовым уровням, а для подпорной гравитаци-онной степы II класса — 1% по наивысшим годовым уровням.

1966

1957

1954

1949

1948

0,52 0,75

0,76 0,54

0,34

0,29

ð,32

-0,33

-0,44

-0,49

1961

1954

1957

1948

1949

Рис. 110. Обеспеченность годовых уровней 1-среднегодовые уровни; 2-наивысшие годовые уровни.

Располагаем исходные данные табл. 91 в порядке убывания уровней (столбцы 4—7), и по формуле 184 для каждого n определяем F_n . По значениям F_n и соответствующим им наивысшим годовым и среднегодовым уровням строим режимные функции (рис. 110). Экстраполируем режимные функции в область малых обеспеченностей и снимаем:

для F = 1% значение $\eta_{\rm H} = 0.93$ м, для F = 50% — $\eta_{\rm cp., 50\%} = -0.25$ м.

Расчетные характеристики ветра

7. При определении элементов ветровых волн и ветрового нагона должны приниматься обеспеченности расчетного шторма для сооружений I, II классов — 2% (1 раз в 50 лет) и III, IV классов — 4% (1 раз в 25 лет).

Для сооружений I и II классов допускается обеспеченности расчетного шторма принимать 1% (1 раз в 100 лет) при надлежащем обосновании.

8. Назначение отметок гребня сооружений откосного профиля и нижней границы крепления откоса должно выполняться при обеспеченности максимальной скорости ветра, принимаемой по табл. 92(37), для заданной обеспеченности расчетного уровня воды.

Таблица 92(37)

Обеспеченность расчет-	Максимального	1и5	25	50	75					
ного уровня воды, %	Минимального	100	75	50	25					
Обеспеченность максимальной ско- рости ветра, %, для класса сооружений	I, II 111 IV	20 30 50	8 10 20	4 5 10	2 3 5					
Примечания: 1. При определении отметок гребня сооружений расчетный уровень воды необходимо прини- мать для сооружений I класса—1% и II—IV классов—5%. 2. Расчетные скорости ветра для сооружений I, II клас- сов надлежит уточнять по данным натурных наблюдений в период стояния расчетных максимальных уровней.										

9. Расчетная скорость ветра должна определяться на высоте 10 м над уровнем воды по формуле

$$W = k_z W_z$$
, 185(149)

где k_z — коэффициент, принимаемый при z=5 м — 1,1; при z=10 м — 1; при z=20 м и более — 0,9; W_z — окорость ветра, измеренная на высоте z, м.

Примечание. Данные по скоростям ветра, измеренные по флюгеру, необходимо корректировать путем умножения их на коэффициент k_{Φ} , принимаемый равным:

при скорости ветра	i 10	м/с	И	менее	$k_{\Phi} = 1$,
то же	15	м/с			$k_{\Phi} = 0.9$
»	25	м/с	И	более	$k_{\Phi} = 0.8.$

10. Обеспеченность F_n , %, скорости ветра необходимо определять по формуле

$$F_n = 4,17 \ \frac{t}{Nn_t P_W},$$
 186 (150)

где t — непрерывная продолжительность действия ветра, ч; N — число дней наблюдений в году за безледный период; n_t — заданное число лет; P_w — повторяемость волноопасиого направления ветра (в долях единицы от суммы повторяемости всех направлений).

При отсутствии сведений о продолжительности действия ветра допускается для предварительных расчетов принимать *t* равным: для водохранилищ и озер 6 ч; для морей 12 ч; для океанов 18 ч.

Режимные функции скорости ветра строят на клетчатке вероятностей (рис. 111) для волноопасных направлений по значениям скорости ветра W, м/с, и соответствующим им обеспеченностям F, % (пример 46).

11. Расчетные скорости ветра при разгонах менее 100 км допускается определять по данным натурных наблюдений над максимальными ежегодными значениями скоростей ветра без учета их продолжительности.

Рис. 111. Клетчатка вероятностей.

При проектировании сооружений откосного профиля расчетная обеспеченность скорости ветра по ряду максимальных ежегодных его значений находится в соответствии с п. 7 настоящего положения, а обеспеченность уровня при определении отметок гребня сооружений принимается по примечанию 1 табл. 37.

При необходимости учета обеспеченностей уровня менее 1% расчетная скорость ветра для сооружений I, II, III и IV классов принимается с обеспеченностью, равной 50%.

12. Расчетные скорости ветра при разгонах более 100 км следует определять с учетом их пространственного распределения.

При предварительном определении элементов волн допускается наиболее вероятное значение предельного разгона D_{np} принимать по табл. 93 (38) для заданной расчетной скорости ветра.

Τı	ιбл	uua	93	(38)

Скорость ветра W,	20	25	30	40	
Значения предель-	на морях	800	600	300	100
ного разгона D _{пр} , км	на океанах	1600	1200	600	200

Пространственное распределение скорости ветра учитывают путем построения полей ветра, рассчитываемых по синоптическим картам. Расчетные скорости ветра в каждой точке карты необходимо определять по графикам, приведенным на рис. 112 и 113. По значению радиуса кривиз-

Рис. 112. График для определения β_T *I*-анклоническая кривизна изобар; *II*-антициклоническая кривизна изобар; *I*-(Δt° <-0.5); 2-(-0.5< Δt° <-0,1); 3-(0.1< Δt° <2,0); 4-(Δt° >2,0).

ны изобар $R_{\text{ки}}$, прад. мерид, с учетом разности температур воды и воздуха Δt , °С, для циклонической (когда изобары обращены выпуклостью в сторону более высокого давления) или антициклонической кривизны изобар (когда изобары обращены выпуклостью в сторону более низкого давления) по рис. 112 определяют коэффициент $\beta_{\text{т}}$. Затем находят произведение $d_{\text{T}} = d_n \beta_{\text{T}}$, где d_n , град. мерид., — расстояние между изобарами в окрестности расчетной точки, проведенными через 5 мб. Если изобары проведены не через 5, а через *n* мб, то расстояние d_n увеличивают в 5/*n* раз. По значению d_{T} , град. мерид., и широте φ , град, по рис. 113 определяют скорость ветра *W*, м/с (пример 47).

Направление ветра необходимо отклонять от изобары в сторону низкого давления на 10 градусов.

Но типовым полям атмосферного давления (синоптическим картам) следует строить типовые поля ветра (пример 48). За основу типизации принимают направление и градации скорости ветра для той части акватории, в пределах которой требуется определить элементы волн. Сначала карты группируют по направлениям ветра. Затем производят разделение этих групп карт на подгруппы,с определенными градациями скорости ветра (обычно через 5 м/с). Для каждой градации скорости в данной группе вычисляют (путем подсчета числа соответствующих карт) ее повторяемость, а также среднюю и наибольшую продолжительность. Для каждой градации выбирают также наиболее характерное распределение атмосферного давления над всей акваторией бассейна и производят расчет соответствующих полей ветра.

В итоге получают различные типы и подтипы полей ветра известной повторяемости и продолжительности действия. По каждому типовому полю ветра определяют элементы волн известной обеспеченности в расчетной точке и строят на клетчатке вероятностей (рис. 111) режимные функ-

Рис. 113. График для определения скорости ветра W м/с по параметру d_т, град. мерид., н широте φ , град.

ции элементов волн. По режимным функциям определяют значения элементов волн для расчетного шторма (рис. 121).

Примечание. Допускается использовать типовые поля ветра, имеющиеся в фондах Гидрометеослужбы СССР.

Пример 46. Определить расчетную скорость ветра *W* для волноопасных направлений, возможную раз в 25 лет, зная повторяемость градаций скорости ветра по волноопасным направлениям, %, и повторяемость этих направлений (табл. 94).

Непрерывная продолжительность действия ветра t=6 ч. Акватория не имеет ледового покрова (N=365 суток). Повторяемости ветра в табл. 94 даны в процентах от числа случаев наблюдений для каждого направления. Ветер измерялся по анемометру, установленному на высоте 10 м.

Решение. На основе табл. 94 составляем табл. 95, подсчитывая обеспеченность путем суммирования повторяемости от больших скоростей ветра к меньшим.

По данным табл. 95 на клетчатке вероятностей (рис. 114) строим режимные функции скорости ветра. Кривые экстраполируем в область ма-

Таблица 94

Таблица 95

Градации скорости, м/с	Во. на			
	СЗ	ссз	с	
0—5	88	82	75	
5,1-10	11,4	14,5	19	
15,1-20	0,03	2,0 0,6	4,0	
20,125 25.1 u болоо	—	0,1	0,23	
Повторяемость на-		0,00	0,00	
правления <i>Р</i> , (в до- лях единицы)	0,1	0,43	0,25	

Градации скорости,	Волноопасные направления					
м/с	СЗ	ссз	с			
0—5 5,1—10 10,1—15 15,1—20 20,1—25 25,1 и более	100 12,03 0,63 0,03 — —	100 18,03 3,53 0,73 0,13 0,03	100 25,1 6,01 1,41 0,31 0,08			

лых обеспеченностей. Обеспеченности F_n раз в 25 лет (табл. 94) вычисляем по формуле 186 (150) для каждого из направлений ветра.

Получим для C3 направления ветра $F_{25} = \frac{4,17\cdot 6}{365\cdot 25\cdot 0,1} = 0,027$; аналогично для CC3 $F_{25} = 0,006$, для C $F_{25} = 0,011$. C рис. 114 снимаем скорости ветра с обеспеченностью 1 раз в 25 лет: W = 15 м/с (C3), W = 31 м/с (CC3) и W = 33 м/с (C).

Пример 47. Требуется найти скорость ветра на высоте 10 м для широты $\varphi = 40$ град при циклонической системе изобар, радиусе кривизны изобар $R_{\rm KH} \doteq 10$ град. мерид. и разности температуры воды и воздуха $\Delta t = 1,0^{\circ}$ С.

Рис. 115. Типовое барическое поле (а) и соответствующее ему поле ветра (б).

Расстояние между изобарами d_n в окрестности расчетной точки, проведенными на синоптической карте через 5 мб, равно 1,5 град. мерид. Решение. Используя график, приведенный на рис. 112, по $R_{\rm rm} =$ = 10 град, $\Delta t = 1,0^{\circ}$ С, при циклонической системе изобар определяем $\beta_{\rm T} =$ = 1,72.

По графику, приведенному на рис. 114, по вычисленному $d_{\rm T} = d_n \beta_{\rm T} = = 1,72 \cdot 1,5 = 2,6$ и $\varphi = 40$ град определяем скорость ветра W = 15 м/с.

Пример 48. Дано (рис. 115, *a*) типовое барическое поле давления (синоптическая карта). Требуется рассчитать типовое поле ветра.

Решение. Определяем скорости ветра в расчетных точках P_i . Направление ветра в каждой точке отклоняем на угол 10 град в сторону низкого давления (рис. 115, *a*). По результатам расчета строим типовое поле ветра (рис. 115, *б*).

Элементы волн в глубоководной зоне

13. Среднюю высоту \bar{h}_{rs} , м, и средний период волн $\bar{\tau}$, с, в глубоководной зоне необходимо определять по верхней огибающей кривой рис. 116 (38). По значениям безразмерных величин $\frac{gt}{W}$ и $\frac{gD}{W^2}$ и верхней огибающей кривой необходимо определить значения $\frac{g\bar{h}_{rs}}{W^2}$ и $\frac{g\bar{\tau}}{W}$, и по меньшим нх величинам принять среднюю высоту и средний период волн.

Среднюю длину волн $\bar{\lambda}_{r,n}$, м, при известном значении $\bar{\tau}$ следует определять по формуле:

$$\bar{\lambda}_{\Gamma \Lambda} = \frac{g \bar{\tau}^2}{2\pi}.$$
 187 (151)

Примечание. При переменных скоростях ветра вдоль разгона волн допускается принимать $\bar{h}_{r,\pi}$ по результатам последовательного определения высоты волны для участков с постоянными значениями скорости ветра.

Ниже рассматриваются часто встречающиеся в проектной практике случаи воздействия на акваторию ветра переменной скорости. Выполнение приводимых указаний иллюстрируется численными примерами 50—53.

а) Скорость ветра переменна вдоль разгона

Среднюю высоту $h_{r,n}$, м, и средний период волн $\overline{\tau}$, с, необходимо определять в этом случае путем следующих построений. Из расчетной точки проводят в направлении против ветра луч; его делят на участки, в пределах которых скорость ветра принимают постоянной. Участки выбирают не реже, чем через 5 м/с. Для каждого участка берут проекцию D_i^* на направление ветра в окрестностях данного участка.

Расчет выполняют в следующей последовательности:

для конца первого участка (от подветренного берега) данного луча по средней для участка скорости ветра W_1 и проекции D_1^* находят по рис. 116 (38) значение $g\bar{h}_1/W_1^*$, по которому определяют среднюю высоту волн \bar{h}_1 ;

с огибающей кривой рис. 116 (38) снимают значение $g\Delta D_1^*/W_2^2$, отвечающее величине $g\bar{h}_1W_2^2$, где W_2 — скорость ветра на втором участке луча;

величину $g\Delta D_1^*/W_2^2$ складывают с величиной gD_2^*/W_2^2 , где D_2^*- проекция второго участка луча на направление ветра;

по значению $\frac{g'(\Delta D_1^* + D_2^*)}{W_2^2}$ и огибающей кривой рис. 116 (38) определяют величину $g\overline{h_2}/W_2^2$, откуда находят среднюю высоту волн $\overline{h_2}$ для конца второго участка данного луча;

аналогичным образом определяют средние высоты волн для всех последующих участков с постоянными скоростями ветра (пример 50).

б) Скорость ветра переменна в пространстве (задано поле ветра)

Среднюю высоту h, м, и средний период волн τ , с, при переменной в пространстве скорости ветра определяют путем следующих построений. Из расчетной точки проводят главный луч в направлении одного из румбов, близкого к направлению ветра в окрестности расчетной точки, и боковые лучи с интервалом 22,5 град в секторе $\pm 67,5$ град от главного луча. Лучам присваиваются порядковые номера n=-3, -2, -1,0, 1, 2, 3, где номер 0 (ноль) соответствует главному лучу.

Каждый луч делят на участки $D_1, D_2, D_3, \ldots D_i$, в пределах которых скорость должна изменяться не более, чем на 5 м/с, и направление ветра не более, чем на 22,5 град. Для каждого участка со скоростями ветра $W_1, W_2, W_3, \ldots W_i$ определяют углы $\theta_1, \theta_2, \theta_3, \ldots \theta_i$ между направлением луча и направлением ветра и находят проекции участков луча на направление ветра $D_1^*, D_2^*, D_3^*, \ldots D_i^*,$ где $D_i^* = D_i \cos \theta_i$.

Эти проекции рассматривают в качестве расчетных отрезков разгона. В соответствии с требованиями, приведенными в п. 13, определяют высоты волн для каждого луча \overline{h}_{-3} , \overline{h}_{-2} , \overline{h}_{-1} ,..., \overline{h}_3 .

Среднюю высоту воли в расчетной точке определяют по формуле 189 (152). В соответствии с требованиями, приведенными в п. 13, по безразмерной величине $\frac{g\bar{h}_{r,n}}{W^2}$, где W — скорость ветра в расчетной точке, по рис. 116 (38) определяют безразмерную величину $g\bar{\tau}/W$ и средний период волн $\bar{\tau}$ (примеры 51 и 52).

в) Скорость ветра переменна в пространстве, ветер задан в расчетной точке

Элементы волн в глубоководной зоне с обеспеченностью 1 раз в n_t лет (п. 7) при отсутствии сведений о пространственном распределении скорости ветра, но при наличии сведений о повторяемости скорости ветра в расчетной точке определяют путем построения на клетчатке вероятностей (п. 10) режимных функций для средних высот и средних периодов волн.

Обеспеченность F, %, каждого задаваемого значения средней высоты волны \overline{h} (табл. 96) и среднего периода волн $\overline{\tau}$ (табл. 97) вычисляют по формуле

$$F = \sum_{1}^{N} \varphi(W) p(k_D), \qquad 188$$

где $\varphi(W)$ — повторяемость среднего значения скорости ветра в данной градации; N — число градаций; $p(k_D)$ — коэффициент, определяемый по табл. 96, 97 соответственно элементам воли и значениям средней скорости ветра в градациях.

Задаваемые значения элементов волн (высота и период) не должны превышать значений, определяемых в соответствии с требованиями п. 13 по величине скорости ветра в каждой градации и разгону (или продолжительности). Высоты волн *i* %-ной обеспеченности следует определять в соответствии с требованиями п. 15.

14. При сложной конфигурации береговой черты среднюю высоту волн $h_{r,n}$, м, необходимо определять по формуле

$$\overline{h}_{\Gamma,I} = 0.1 \sqrt{25\overline{h}_{0}^{2} + 21(\overline{h}_{1}^{2} + \overline{h}_{-1}^{2}) + 13(\overline{h}_{2}^{2} + \overline{h}_{-2}^{2}) + 3.5(\overline{h}_{3}^{2} + \overline{h}_{-3}^{2})}, \quad 189(152)$$

где \overline{h}_n , м, (при $n=0; \pm 1; \pm 2; \pm 3$) — средние высоты волн, которые должны приниматься согласно рис. 116(38) по расчетной скорости ветра и проекциям лучей D_n , м, на направление главного луча, совпадаю-

<i>W</i> , м/с	р(k _D) при <i>ћ</i> , м										
	1	2	3	4	5	6	7	8	9	10	
$\begin{array}{c}9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\20\\21\\22\\33\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\34\\35\\36\\37\\38\\9\\40\end{array}$	0,61 0,81 0,92 0,94 0,95 0,96 0,96 0,96 0,97 0,97 0,97 0,97 0,97 0,97 0,97 0,97	0,10 0,36 0,564 0,71 0,76 0,79 0,813 0,855 0,886 0,877 0,888 0,897 0,911 0,921 0,921 0,921 0,923 0,933 0,933 0,944 0,944 0,944	0,05 0,16 0,3 0,41 0,49 0,55 0,6 0,64 0,68 0,7 0,73 0,74 0,76 0,78 0,79 0,81 0,83 0,83 0,83 0,83 0,83 0,84 0,85 0,86 0,86 0,87	0,03 0,1 0,27 0,34 0,45 0,49 0,53 0,59 0,61 0,635 0,67 0,69 0,71 0,72 0,73 0,74 0,75 0,76	0,03 0,08 0,13 0,19 0,29 0,33 0,37 0,41 0,44 0,52 0,54 0,56 0,57 0,59 0,61 0,62 0,63	0,01 0,03 0,06 0,10 0,14 0,21 0,25 0,28 0,32 0,34 0,37 0,39 0,41 0,46 0,47 0,49	0,01 0,03 0,05 0,08 0,10 0,13 0,16 0,19 0,22 0,24 0,26 0,29 0,31 0,34 0,36	0,007 0,016 0,028 0,045 0,062 0,084 0,1 0,13 0,14 0,17 0,19 0,21 0,23	0,003 0,008 0,017 0,025 0,038 0,052 0,067 0,082 0,10 0,12 0,13	0,002 0,004 0,009 0,015 0,022 0,032 0,042 0,054 0,066	

щего с направлением ветра. Лучи проводятся из расчетной точки до пересечения с линией берега в направлениях $\theta = \pm 22,5 n$, град, от главного луча.

Средний период волн определяется по безразмерной величине $\frac{g^z}{W}$ которая принимается согласно рис. 116(38) при известной безразмерной величине $\frac{g\bar{h}_{rn}}{W^2}$. Среднюю длину волн следует определять по формуле 187(151).

Примечание. Конфигурация береговой черты принимается сложной, если величина $\frac{L_{\rm A}}{L_{\rm K}} > 2$, где $L_{\rm A}$ и $L_{\rm K}$ — соответственно наибольший и наименьший лучи, проведенные из расчетной точки в секторе ±45, град, от направления ветра до пересечения с подветренным берегом; при этом препятствия с угловым размером менее 22,5, град, не учитываются.

При расчетах элементов волн (пп. 13, 14) для условий водохранилищ со сложной конфигурацией береговой черты допускается определять эквивалентный разгон $D_{\mathbf{p}}$ по формуле:

$$D_{\rm p} = 0.27 \left[D_0 + 0.85 \left(D_1 + D_{-1} \right) + 0.5 \left(D_2 + D_{-2} \right) \right],$$
 190

где D_n , м, $(n=0; \pm 1; \pm 2)$ — фактические разгоны по лучам, которые проводятся из расчетной точки до пересечения с линией берега в направлениях $\theta = \pm 22,5 n$, град, от главного луча.

Рис. 116(38). Графики для определения элементов ветровых волн в глубоководной и мелководной зонах.

Таблица	97
---------	----

W, м/с				-			p (A	<i>D</i>) при	- , c					
	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\begin{array}{c} 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 20 \\ 21 \\ 223 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 334 \\ 35 \\ 36 \\ 37 \\ 38 \end{array}$	2 0,99 0,99 0,99 1 1	0,96 0,97 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,99 0,99	1 0,79 0,88 0,92 0,93 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95	3 0,43 0,69 0,78 0,83 0,86 0,89 0,91 0,92 0,92 0,92 0,92 0,93 0,93 0,93 0,93 0,93 0,94 0,94 0,94 0,94 0,94 0,94 0,94 0,94	0,33 0,54 0,64 0,77 0,79 0,82 0,83 0,84 0,85 0,86 0,86 0,86 0,86 0,86 0,86 0,87 0,87 0,87 0,87 0,88 0,88 0,88 0,89 0,89 0,89 0,89 0,89	0.2 0.37 0.55 0.6 0.64 0.77 0.75 0.74 0.77 0.771 0.773 0.78 0.78 0.79 0.78 0.8 0.82 0.82 0.82 0.82 0.82 0.82 0.82	o 0,11 0,22 0,32 0,53 0,55 0,55 0,65 0,66 0,66 0,66 0,66 0,66	9 0,05 0,12 0,25 0,39 0,42 0,45 0,55 0,57 0,54 0,54 0,55 0,57 0,58 0,6 0,61 0,61	10 0,022 0,053 0,095 0,14 0,18 0,22 0,25 0,28 0,31 0,34 0,37 0,38 0,39 0,41 0,43 0,44 0,45 0,47 0,48	0,02 0,041 0,067 0,15 0,15 0,17 0,22 0,24 0,25 0,27 0,29 0,3 0,32 0,33 0,34	12 0,008 0,015 0,028 0,042 0,059 0,077 0,095 0,11 0,13 0,14 0,16 0,17 0,19 0,21	13 0,004 0,010 0,010 0,024 0,065 0,066 0,077 0,098 0,11	14 0,003 0,006 0,008 0,013 0,013 0,023 0,029 0,036	0,001 0,003 0,004 0,006 0,002
40	1	0,99	0,97	0,94	0,90	0,83	0,74	0,62 0,62	0,49 0,5	0,35 0,36	0,22	0,12 0,13	0,049 0,056	0,014

Примечание. При т=1с для всех значений скорости ветра $p(k_D) = 1$.

15. Высоту волны *i* %-ной обеспеченности в системе $h_{r,r,i}$, м, следует определять умножением средней высоты волн на коэффициент k_i , принимаемый по графикам рис. 117(39) для безразмерной величины gD/W^2 . При сложной конфигурации береговой черты значение gD/W^2 должно приниматься по величине $g\overline{h}_{r,r}/W^2$ и верхней огибающей кривой рис. 116(38) настоящего приложения.

При определении элементов волн с учетом продолжительности действия ветра для случая $gt/W < gD/W^2$, значение gD/W^2 должно приниматься по величине gt/W на нижней горизонтальной шкале рис. 116 (38).

16. Превышение вершины волны над расчетным уровнем $\eta_{\rm B}$, м, следует определять по безразмерной величине $\eta_{\rm B}/h_i$ (рис. 118(40)) для данного значения $h_i/g\tau^2$, принимая $H/\lambda_{\rm FR}=0.5$.

При скорости ветра $W \ge 25$ м/с допускается увеличивать превышение волны над расчетным уровнем $\eta_{\rm B}$ на 10%.

Пример 49. Определить элементы ветровых волн $\bar{h}_{r,n}$, $\bar{\tau}$, $\bar{\lambda}_{r,n}$ в точке *Р* глубоководной зоны. Ветер постоянен по скорости и направлению. Скорость ветра W = 18 м/с, разгон D = 350 км. Продолжительность действия ветра t = 6 ч.

Решение. Вычисляем величины $\frac{gD}{W^2} = 10586$ и $\frac{gt}{W} = 11760$. По верхней огнбающей кривой графика, приведенного на рис. 116 (38),

находим соответствующие значения $\left(\frac{g\bar{h}_{r,n}}{W^2}\right)_D = 0,11, \left(\frac{g\bar{h}_{r,n}}{W^2}\right)_t = 0,0825,$ $\left(\frac{g\bar{\tau}}{W^2}\right)_D = 4,9$ и $\left(\frac{g\bar{\tau}}{W}\right)_t = 4,2$. Так как $\left(\frac{g\bar{h}_{r,n}}{W^2}\right)_t < \left(\frac{g\bar{h}_{r,n}}{W^2}\right)_D$, то среднюю высоту волны $\bar{h}_{r,n} = 2,7$ м определяем по величине $\left(\frac{g\bar{h}_{r,n}}{W^2}\right)_t = 0,0825,$ а средний период $\bar{\tau} = 7,7$ с — по

величине $\left(-\frac{g\tau}{W}\right)_{t} = 4,2$. По формуле 187 (151) средняя длина волны

$$\overline{\lambda}_{r,r} = rac{9,81\cdot7,7^2}{2\cdot3,14} = 93$$
 m.

Пример 50. Найтн среднюю высоту волн \overline{h} в точке P глубоководной акватории на конце луча, направление которого совпадает с направлением ветра, а скорость ветра W переменна (рис. 119):

на первом участке $D_1 = 40$ км, $W_1 = 20$ м/с;

на втором участке $D_2 = 60$ км, $W_2 = 25$ м/с; на третьем участке $D_3 = 50$ км, $W_3 = 30$ м/с. Решение.

Для первого участка $gD_1/W_1^2 = 980$ и по рис. 116 (38) $g\overline{h}_1/W_1^2 = 0.047$, откуда $\overline{h} = 1.9$ м.

Рис. 120. Графические построения для определения элементов волн в расчетной точке *P* по заданному полю ветра.

Рис. 119. Схема к расчету элементов волн при переменной скорости ветра вдоль разгона.

Отношение $g\bar{h}_1/W_2^2 = 0.03$ и по рис. 116 (38) $\frac{g\Delta D_1}{W_2^2} = 330$. Суммируем относительные разгоны

$$\frac{g\Delta D_1}{W_2^2} + \frac{gD_2}{W_2^2} = 330 + 941 = 1271.$$

Затем с рис. 116 (38) снимаем относительную высоту $\frac{g\bar{h}_2^3}{W_2^2} = 0,052$, откуда $\bar{h}_2 = 3,3$ м. Аналогичным образом $g\bar{h}_2/W_3^2 = 0,036$. Далее, $\frac{g\Delta D_2}{W_3^2} = 510$ н $\frac{g\Delta D_2}{W_3^2} + \frac{gD_3}{W_3^2} = 510 + 544 = 1054$.

Соответственно, $g \bar{h}_3 / W_2^2 = 0,0475$, и средняя высота волны в расчетной точке $P \bar{h}_8 = 4,4$ м.

Пример 51. Выполнить необходимые построения для определения элементов воли в расчетной точке *P* при переменной в пространстве скорости ветра (рис. 120). Решение.

Из расчетной точки *P* проводим главный луч в направлении ЮС, совпадающий с точностью до 22,5 град с направлением ветра в окрестности расчетной точки, и боковые лучи с интервалом в 22,5 град в секторе ±67,5 град от главного луча. Лучам присваиваем порядковые номера n = -3, -2, -1, 0, 1, 2, 3. Каждый луч делим на участки D_1, D_2, D_3, \ldots D_i , в пределах которых скорость должна изменяться не более, чем на 5 м/с, и направление — не более, чем на 22,5 град; находим, далее, проекции $D_1^*, D_2^*, D_3^*, \ldots D_i^*$, которые рассматриваем в качестве расчетных отрезков разгона. На рис. 120 приведена указанная разбивка только для луча n = 1.

Пример 52. Определить высоту волны \overline{h} , м, в расчетной точке глубоководной зоны при переменной в пространстве скорости ветра. Значения высот волн $\overline{h_n}$ по лучам приведены в табл. 98.

Таблица 98

Порядковый но- мер луча п	3	-2	-1	0	1	2	3
Высота $ar{h}_n$	0,8	0,9	0,9	1	1	0,8	0,4

Решение.

Определим среднюю высоту волн в расчетной точке по формуле 189(152)

$$\begin{split} \bar{h}_{\mathrm{r},\mathrm{r}} &= 0,1 \; \sqrt{25 \cdot 1^2 + 21} \left(0,9^2 + 1^2 \right) + 13 \left(0,9^2 + 0,8^2 \right) + 3,5 \left(0,8^2 + 0,4^2 \right) = \\ &= 0,1 \; \sqrt{25 + 38 + 18,8 + 2,8} = 0,1 \; \sqrt{84,6} = 0,92 \; \mathrm{m}. \end{split}$$

Пример 53. Определить среднюю высоту \overline{h} и средний период $\overline{\tau}$ в расчетной точке при разгоне D = 500 км и продолжительности действия ветра t=18 ч для заданного волноопасного направления с обеспеченностью 1 раз в 25 лет (F=0.04%) по повторяемости градаций скорости ветра, приведенной в табл. 99.

Таблица 99

Градации скорости ветра W, м/с	8,1-12	12,1 16	16,1-20	20,1–24	24,1-28
Повторяемость скорости ветра φ (W), %	60	22	5,9	1	0,1

Таблица 100

		$\tilde{h} = 1$ M		-	2		= 3		: 4	=	5		6
W, M/c	φ (W), %	(⁽ 24) d	$b(k_D) \neq (W)$	$p(k_D)$	$D(k_D) \neq (W)$	$p(k_D)$	$(A1) \diamond (Qx) d$	$p(k_D)$	$(M) \diamond (Qx) d$	(<i>4D</i>)	$(M) \diamond (Q) d$	p (kD)	p (k _D) ¢ (W)
1	2	3	4	5	6	7	8	9.	10	11	12	13	14
$F = \sum_{1}^{10}$	$ \begin{array}{c} 60 \\ 22 \\ 5,9 \\ 1 \\ 0,1 \end{array} $	0,81 0,94 0,96 0,97 0,98 (W)=	48,6 20,68 5,66 0,97 0,098 =76,01	0,53 0,79 0,86 0,9	11,66 4,66 0,86 0,09 17,27	0,41 0,64 0,74	2,42 0,64 0,074 3,13	0,03 0,34 0,53	0,177 0,34 0,053 0,57	0,08 0,29	0,08 0,029 0,11	0,1	0,01 0,01

Решение.

На основе табл. 99 составляем табл. 100. В столбцы 1 и 2 записываем средние скорости ветра *W* для каждой градации и их повторяемости $\phi(W)$.

Согласно требованиям п. 13 по значениям безразмерных параметров gD/W² и gt/W и рис. 116(38) определяем высоты волн для каждой скорости ветра, приведенной в табл. 100. Результаты сводим в табл. 101.

Задаемся высотами волн h = $=1, 2, 3, \ldots, M, в$ соответствии со значениями. приведенными табл. 100, но не превышающими величин, помещенных в табл. 101.

По табл. 96 определяем коэффициенты $p(k_D)$ для заданных значений скоростей ветра и высот волн. Результаты записываем в столбцы 3, 5, 7, 9, 11, 13 табл. 100.

В столбцы 4, 6, 8, 10, 12, 14 табл. 100 для каждой скорости ветра записываем произведения $p(k_D) \phi(W)$. По формуле 188 определяем обеспеченность F заданных значений высот волн. суммируя по вертикали соответствующие величины, приведенные в столбцах 4, 6, 8, 10, 12, 14. Результаты наносим на клетчатку вероятностей, рис. 121 (значение F, соответствующее $\overline{h} = 1$ м, на рисунок не нанесено).

Кривую распределения высот воли экстраполируем в область малых обеспеченностей и снимаем с графика высоту волны h= =5,4 м, отвечающую обеспеченности F = 0.04 %.

В соответствии с требованиями п. 13 по значениям безразмерных параметров gD/W^2 и gt/W и рис. 116(38) определяем периоды волн для каждой скорости ветра, приведенной в табл. 100; результаты записываем в табл. 102.

Результаты расчетов обеспеченности F периодов волн т по формуле 188, аналогично расчетам обеспеченностей высот волн \overline{h} , с учетом ограничений, задавае*W*, м/с 22 10 14 18 26 *ћ*. м 1.2 2.33.5 4.8 6.2

Таблица 101

F, % 0,0001 7,0002 7,0005 7,0005 0,005 0,005 0.01 0.05 0,1 0,2 0.5 1 2 2 1 5 10 20 30 78910 1214 2 3 4 56 Ћ, м, Ť, ç

Рис. 121. Режимные функции высоты \bar{h} (1) и периода τ (2).

мых табл. 102, приведены в табл. 103. Значения коэффициентов $p(k_D)$ определены по табл. 97. Результаты наносим на клетчатку вероятностей (рис. 121). Средний период волн т, соответствующий обеспеченности F = =0,04%, равен 11,0 с.

Таблица 102

Ī	₩, м/с	W, м/с 10		18	22	26	
	τ, c	5,3	7,2	8,8	10,2	11,4	

		τ.	= 1 c		= 2		= 3	= 4		
<i>W</i> , <i>M</i> /c	¢(1A), %	$(^{(T}y) d$	$(A1) \phi (Q3) d$	$(^{(G_{a})}d$	$(A1) \diamond (Q4) d$	(⁽ 4)) d	$(M) \diamond (Qy) d$	p (\$D)	$(M) \diamond (Qx) d$	
1	2	3	4	5	6	7	8	9	10	
$ \begin{array}{c} 10 \\ 14 \\ 18 \\ 22 \\ 26 \\ F = \end{array} $	$\sum_{1}^{60} \frac{22}{5,9} \frac{5,9}{1} \frac{1}{0,1} \frac{1}{2} p(k_{f})$	0,99 1 1 1 1 2) φ (<i>W</i>)	59,4 22 5,9 1 0,1 = 88,40	0,98 0,98 0,99 0,99 0,99 0,99	58,8 21,56 5,84 0,99 0,099 87,29	0,92 0,95 0,96 0,96 0,97	55,2 20,9 5,66 0,96 0,097 82,82	0,69 0,87 0,91 0,92 0,93	41,4 19,14 5,37 0,92 0,093 66,92	

Пример 54. Найти элементы волн \overline{h} , $\overline{\tau}$, λ в точке M глубоководной зоны (рис. 122) с учетом сложного контура береговой черты при постоянном по скорости и направлению северном ветре (W=21 м/с) с продолжительностью его действия t=6 ч.

Рис. 122. Схема для расчета элементов воли с-учетом сложного контура береговой черты.

Решение. Выполняем по карте (рис. 122) необходимые построения и определяем величины D_n (табл. 104).

n	n	θ _{<i>n</i>} ,	9 _л , <i>D_n</i> , <u>4</u> рад км	$\frac{gD_n}{W^2}$	$\frac{g_t}{W} = 10080; \left(\frac{g\bar{h}_n}{W^2}\right)_t = 0,1$			
		Трад		, w	$g\overline{h}_n/W^2$	<i>ћ_п,</i> м		
	3 2 1 0 1 2 3	$-67.5 \\ -45 \\ -22,5 \\ 0 \\ 22,5 \\ 45 \\ 67,5$	73 63 128 31 49 90 76	$1624 \\ 1401 \\ 2844 \\ 689 \\ 1089 \\ 2000 \\ 1689$	0,055 0,052 0,0675 0,04 0,049 0,06 0,057	2,47 2,34 3,04 1,82 2,2 2,72 2,72 2,55		

Таблица **103**

= 5		= 5 = 6		= 7		-	= 8	-	9	=	10
(⁽ <i>Q</i> ¥) d	<i>(M)</i> ۵ (<i>M)</i>	p (\$D)	p (\$D) \$ (W)	(<i>C</i> ¥) d	$p(k_D) \varphi(W)$	(^Q ų) d	p (\$\$D) \$\$ (\$\$W)	(<i>U</i> ¥) <i>d</i>	$p\left(k_{D}\right)\phi\left(M'\right)$	$(^{(D)}y) d$	$p(k_D) \varphi(W)$
11	12	13	14	15	16	17	18	19	20	21	22
0,7 0,81 0,85 0,87	15,4 4,78 0,85 0,087 21,12	0,37 0,64 0,73 0,78	8,14 3,78 0,73 0,078 12,72	0,39 0,56 0,64	2,30 0,56 0,064 2,92	0,12 0,35 0,47	0,71 0,35 0,047 1,11	0,14 0,28	0,14 0,028 0,17	0,02 0,12	0,02 0,012 0,032

В первом столбце таблицы записываем порядковые номера главного и боковых лучей, во втором — их направления, в третьем — данные о величинах D_n .

Расчеты приведены в табл. 104. По формуле 189(152) средняя высота волны

$$\overline{h} = 0,1 \sqrt{25 \cdot 1,82^2 + 21 (3,04^2 + 2,2^2) + 13 (2,34^2 + 2,72^2) + 3,5 (2,47^2 + 2,55^2)} = 2,4$$
 M.

При $\frac{g\bar{h}}{W^2} = \frac{9.8 \cdot 2.4}{2l^2} = 0,053$ находим по рис. 116 (38) $\frac{g\bar{\tau}}{W} = 3,1$, откуда средний период волны $\bar{\tau} = 6,6$ с. По формуле 187(151) средняя длина волны

$$\overline{\lambda} = \frac{9,8 \cdot 6,6^2}{2 \cdot 3,14} = 68$$
 м.

Пример 55. Найти высоту волны однопроцентной обеспеченности $h_{1\%}$ в точке *P* глубоководной зоны. Средняя высота волны в точке *P* h=4,4 м, скорость ветра W=30 м/с.

Решение.

В соответствии с требованиями, приведенными в п. 15, по средней высоте $\overline{h} = 4,4$ м и скорости ветра W = 30 м/с находим $\frac{g\overline{h}}{W^2} = \frac{9,8\cdot4,4}{30^2} = 0,0479.$

На огибающей кривой рис. 116(38) снимаем значение $\frac{gD}{W^2} = 1200$. Входим с этим значением в график, приведенный на рис. 117(39), и по кривой, соответствующей F=1%, определяем $k_{1\%}=2,16$, откуда $h_{1\%}=4,4\cdot2,16=9,5$ м.

Пример 56. Определить превышение вершины волны в точке P глубоководной зоны при скорости ветра W = 18 м/с. Высота волны в точке P $h_{1\%} = 6$ м, средний период волн $\tau = 7$ с.

Решение.

В соответствии с требованиями, приведенными в п. 16, при $\frac{h_{1\%}}{g\tau^2} = \frac{6}{9.8 \cdot 7^2} = 0,0125$ и $\frac{H}{\overline{\lambda}_{r,a}} = 0,5$ по графику, приведенному на рис. 118(40), определяем $\frac{\eta_B}{h_{1\%}} = 0,58$, откуда $\eta_{B1\%} = 0,58 \cdot 6,0 = 3,5$ м.

17. Высоту волн i %-ной обеспеченности h_i , м, в мелководной зоне с уклонами дна 0,002 и более следует определять по формуле

$$h_i = k_{\rm T} k_{\rm p} k_{\rm n} k_i \overline{h}_{\rm r.n}, \qquad 191(153)$$

где k_т — коэффициент трансформации; k_р — коэффициент рефракции; k_п — обобщенный коэффициент потерь, определяемые по требованиям п. 18 настоящего приложения.

Длину волн, перемещающихся из глубоководной в мелководную зону, необходимо определять по рис. 123(41) при заданных безразмерных

величинах $\frac{H}{\tilde{\lambda}_{r,n}}$ и $\frac{h_{1}}{g\tau^2}$, при этом период волн принимается равным периоду волн в глубоководной зоне.

Превышение вершины волны над расчетным уровнем $\eta_{\rm B}$, м, следует определять по рис. 118(40) для данных безразмерных величин $\frac{H}{\lambda_{\rm rn}}$ и $\frac{h_l}{g^{2}}$.

Среднюю высоту волны $\overline{h}_{\rm M}$ в мелководной зоне определяют также по формуле 191 (153), принимая $k_{\rm n} \cdot k_i = 1$.

Высоту волн *i* %-ной обеспеченности при параллельных и приблизительно прямолинейных изобатах следует определять по формуле

$$h_l = k_{\rm B} k_l \overline{h_{\rm M}}.$$
 192

Относительная высота волны $\overline{h_{\rm M}}/\overline{h_{\rm r\pi}}$ принимается из рис. 124 по безразмерной величине $H/\overline{\lambda}_{\rm r\pi}$ и углу α между нормалью к изобатам и направлением распространения волн при глубине $H > H_{\rm Kp}$.

Рис. 124. Зависимость коэффициента изменения средней высоты воли в прибрежной зоне от относительной глубины и угла подхода воли.

18. Коэффициент трансформации необходимо принимать по графику 1 рис. 125 (42). Коэффициент рефракции должен определяться по формуле-

$$k_{\rm p} = \sqrt{\frac{S_0}{S}}, \qquad 193(154)$$

тде S₀ — расстояние между смежными волновыми лучами в глубоководной зоне, м; S — расстояние между теми же лучами по линии, проходящей черсз заданную точку мелководной зоны, м.

Относительная	Значения коэффициента k _п					
глубина	при уклонах дна (1 : <i>m</i> /α)					
Н/λ _{гл}	0,025	0,02-0,002				
0,01	0,82	0,66				
0,02	0,85	0,72				
0,03	0,87	0,76				
0,04	0,89	0,78				
0,06	0,92	0,81				
0,08	0,92	0,84				
0,1	0,93	0,86				
0,2	0,96	0,92				
0,3	0,98	0,95				
0,4	0,99	0,98				
0,5 и более	1	1				

Таблица 105(39)

Лучи волн на плане рефракции в глубоководной зоне необходимо принимать по заданному направлению распространения волн, а в мелководной зоне их следует продолжать в соответствии со схемой и графиками рис. 126 (43).

Обобщенный коэффициент потерь должен определяться по задашным значениям величины $\frac{H}{\lambda_{\Gamma,n}}$ и уклонам дна (табл. 105(39)); при уклонах дна 0,03 и более следует принимать значение обобщенного коэффициента потерь равным единице.

Примечание. Значение коэффициента k_p допускается принимать по результатам определения коэффициентов рефракции для волновых лучей, проводимых из расчетной точки в направлениях через 22,5 град от главного луча.

1. План рефракции (рис. 126(43)) необходимо строить для волноопасного направления на карте акватории со сглаженными изобатами. На участке карты акватории с глубинами $H>0,5 \lambda_{rn}$ наносят волновые лучи, отстоящие друг от друга на расстоянии одной или двух исходных длин волн ($\overline{\lambda}_{rn}$), и затем каждый из них, начиная от изобаты $H_0=0,5 \lambda_{rn}$, продолжают до промежуточной между первой и ближайшей к ней изобатами. В точке пересечения данного луча волн с промежуточной изобатой луч следует повернуть в сторону меньших глубин на угол $\Delta \alpha$, определенный согласно схеме и графику, приведенным на рис. 126(43), где α — угол между направлением луча и нормалью к соответствующей промежуточной изобате. Кривые плана рефракции строят указанным способом от глубоководной акватории до расчетной точки на мелководной акватории.

2. Расчеты, подобные указанным в примечании к п. 18, необходимо выполнять для мелководной зоны со сложным рельефом дна, в морских заливах и бухтах при наличии банок и других преград.

Из расчетной точки проводят главный луч в направлении одного из румбов, совпадающих с направлением волн в глубоководной зоне, и боковые лучи с интервалом 22,5 град в секторе $\pm 67,5$ град от главного луча. Лучам присваиваются порядковые номера n = -3, -2, -1, 0, 1, 2,3. По каждому из лучей в соответствии с требованиями п. 18 определяют коэффициенты рефракции в расчетной точке: $(k_p)_{-3}, (k_p)_{-2}, (k_p)_{-1}, \dots$ $(k_p)_3$ и новое значение обобщенного коэффициента рефракции по формуле:

$$k_{p0} = 0.1 \sqrt{25(k_p)_0^2 + 21[(k_p)_1^2 + (k_p)_{-1}^2] + 13[(k_p)_2^2 + (k_p)_{-2}^2] + 3.5[(k_p)_3^2 + (k_p)_{-3}^2]}.$$
 194

19. Среднюю высоту и средний период волн в мелководной зоне с уклопами дна 0,001 и менее необходимо определять по графикам

рис. 116(38) настоящего приложения. По безразмерным величинам $\frac{gD}{W^2}$ и $\frac{gH}{W^2}$ принимаются значения $\frac{g\overline{h}}{W^2}$ и $\frac{g\overline{\tau}}{W}$, и по ним определяются \overline{h} и $\overline{\tau}$.

Высоту волны *i* %-ной обеспеченности в системе следует определять умножением средней высоты волн на коэффициент k_i , принимаемый по графикам рис. 117 (39) настоящего приложения. По безразмерным величинам $\frac{gH}{W^2}$ и $\frac{gD}{W^2}$ определяются значения коэффициента k_i , из которых принимается наименьший.

Среднюю длину волн при известном значении среднего периода следует определять в соответствии с требованиями п. 13 настоящего приложения.

Превышение вершины волны над.расчетным уровнем должно определяться по рис. 118(40) настоящего приложения.

Примечание. Элементы волн, перемещающихся из мелководной зоны с уклонами дна 0,001 и менее в зону с уклонами дна 0,002 и более, необходимо определять согласно требованиям пп. 17 и 18 настоящего приложения, при этом принимается зиачение исходной средней высоты $\overline{h-h_{rn}}$.

1. Элементы волн в мелководной зоне с уклонами дна более 0,001 и менее 0,002 следует определять согласно требованиям пп. 17, 18 и 19 настоящего приложения, принимая в качестве расчетных — наибольшие.

2. Элементы волн при глубинах, переменных вдоль разгона, определяют следующим образом. Профиль дна вдоль линии разгона, начиная от подветренного берега акватории, разбивают на участки с различными и приблизительно одинаковыми в пределах каждого участка уклонами дна.

Для конца первого участка (от подветренного берега) при любых уклонах дна находят среднюю высоту воли \overline{h} , согласно требованиям п. 19.

Для второго участка расчет ведется следующим образом:

При уклонах дна 0,002 и более среднюю высоту волн определяют согласно рекомендациям пп. 17, 18.

При уклонах 0,001 и менее для безразмерных величин $\frac{gh_1}{W^2}$ и $\frac{gH_2}{W^2}$, где H_2 — глубина в конце второго участка, по графику, приведенному на рис. 116(38), находят значение $\frac{g\Delta D_1}{W^2}$;

величину $\frac{g\Delta D_1}{W^2}$ складывают с величной $\frac{gD_2}{W^2}$, где D_2 – длина разгона второго участка;

по значению $\left(\frac{g\Delta D_1}{W^2} + \frac{gD_2}{W^2}\right)$ и кривой, соответствующей $\frac{gH_2}{W^2}$ по графику, приведенному на рис. 116(38), определяют величину $g\overline{h_2}/W^2$,

откуда находят среднюю высоту волн \overline{h}_2 для конца второго участка; средние высоты волн для всех последующих участков определяют по аналогичной схеме.

Пример 57. Определить высоту волны однопроцентной обеспеченности $h_{1\%}$ при глубине H=5 м и параллельных, приблизительно прямолинейных изобатах. Угол подхода α между нормалью к изобатам и направлением распространения волн составляет 60 град. Уклон дна 0,025. Элементы волн в глубоководной зоне: $\overline{h}_{r\pi}=1,2$ м, $\overline{\lambda}_{r\pi}=25$ м. Коэффициент перехода от средней высоты волны к высоте волны 1%-ной обеспеченности $k_{1\%}=2,2$.

Решение.

Высоту волны $h_{1\%}$ в расчетной точке определяем по формуле 192. Вычисляем отношение $\frac{H}{\bar{\lambda}_{r,n}} = 0,2$, и по табл. 105(39) находим $k_n = 0,96$, а по рис. 124 для $\alpha = 60^{\circ}$ снимаем значение $\bar{h}_{M}/\bar{h}_{r,n} = 0,82$, откуда $\bar{h}_{\mu} = 0,98$ м.

Подставляя в формулу 192 найденные величины, находим $h_{1_{36}} = 0.96 \cdot 2.2 \cdot 0.98 = 2.1$ м.

Рис. 127. Карта акватории (к примеру 58).

Пример 58. Рассчитать коэффициенты рефракции $k_{\rm p}$ в мелководной зоне для глубины H=20 м (рис. 127). Исходная длина волн на глубоководной акватории $\bar{\lambda}_{\rm r,r}=206$ м.

Решение.

Коэффициент рефракции k_p находим на основе предварительного построения плана рефракции (рис. 127), начиная с глубин $H = \frac{\overline{\lambda}_{rn}}{2} = = 103$ м.

Расстояние S_0 между лучами 1 и 2 выбираем с таким расчетом, чтобы лучи проходили по разные стороны от расчетной точки A. На карте осуществлено сглаживание изобат (штриховые линии на рис. 127) и обозначены поворотные точки в местах пересечения лучей с промежуточными изобатами. В этих точках последовательно находим величину угла α_{pi} между направлением исходного луча и перпендикуляром, восстановленным к промежуточной изобате. Определяем также отношение глубин на предыдущей и последующей изобатах к исходной длине волны $\overline{\lambda}_{rg}$, и по номограмме (рис. 126(43)) находим угол поворота каждого луча $\Delta \alpha_{pi}$. Откладывая значение $\Delta \alpha_{pi}$ от направления исходного луча в сторону меньших глубин, определяем направление рефрагированного луча. Расчеты сведены в табл. 106.

Таблица 10	06
------------	----

Номер луча	Номер точки	$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $		н _{і+1,} м	$\frac{H_{l+1}}{\overline{\lambda}_{\Gamma I}}$	^α р <i>і</i> , град	^{Δа} р <i>і</i> , град
1	1 2 3 4 5 6	100 90 60 40 30 20	0,48 0,44 0,29 0,19 0,14 0,1	90 60 40 30 20 15	0,44 0,29 0,19 0,14 0,1 0,07	20 34 6 27 41 18	0,2 1,5 0,5 2,5 5 2,5
2	7 8 9 10 11 12	100 90 60 40 30 .20	0,48 0,44 0,29 0,19 0,14 0,1	90 60 40 30 20 15	0,44 0,29 0,19 0,14 0,1 0,07	54 40 25 27 41 3 0	0,5 2 2,5 5 4,5

С построенного плана рефракции снимаем значения $S_0 = 15$ мм и S = 23 мм, и по формуле 193(154) вычисляем коэффициент рефракции в точке $A(k_p)_A = \sqrt{\frac{15}{23}} = 0.81$.

Пример 59. Определить высоту волн однопроцентной обеспеченности $h_{1\%}$ и среднюю длину волн λ в точке с глубиной H=7 м. Уклон дна акватории 0,01. Коэффициент рефракции $k_{\rm p}=0.8$. Коэффициент перехода от средних высот волн к высотам волн однопроцентной обеспеченности $k_{1\%}=2.42$. Исходные элементы волн на глубоководной акватории $\overline{h}_{\rm ra}=3$ м, $\overline{\lambda}_{\rm ra}=80$ м, $\tau=7.2$ с.

Решение.

Высоту волны $h_{1\%}$ определяем по формуле 191(153). Коэффициент трансформации $k_{\rm r}$, входящий в эту формулу, находим по рис. 125(42), где отношению $\frac{H}{\overline{\lambda}_{r,{\rm r}}} = \frac{7}{80} = 0,088$ на кривой 1 соответствует значение $k_{\rm r} = 0,935$. Обобщенный коэффициент потерь при $\frac{H}{\overline{\lambda}_{\rm r,{\rm r}}} = 0,088$ и уклону дна 0,01 (табл. 105(39)) $k_{\rm n} = 0,85$. Подставляя значения $k_{\rm r} = 0,935$, $k_{\rm p} = 0,8$, $k_{\rm n} = 0,85$, $k_{1\%} = 2,42$ и $\overline{h}_{\rm r,{\rm r}} = 3$ м в формулу 191(153), находим

$$\overline{h}_{1\%} = 0.935 \cdot 0.8 \cdot 0.85 \cdot 2.42 \cdot 3 = 4.6$$
 м.

Длину волны определяем по рис. 123(41). Входя в график с параметрами $H/\overline{\lambda}_{r_{n}} = 0,088$ и $h_{1\%}/g\overline{\tau^{2}} = 0,009$, снимаем соответствующее значение $\overline{\lambda}/\overline{\lambda}_{r_{n}} = 0,775$, откуда $\overline{\lambda} = 0,775 \cdot 80 = 62$ м.

Пример 60. Определить обобщенный коэффициент рефракции k_{po} в расчетной точке мелководной зоны. Значения коэффициентов рефракции k_p по лучам, определенные в соответствии с требованиями п. 18, приведены в табл. 107.

Таблица 107

Порядковый но- мер луча <i>п</i>	-3	-2	1	0	1	2	3
Коэффициент <i>к</i> р	0,14	0,35	0,59	0,81	0,45	0,35	0

Решение.

Обобщенный коэффициент рефракции в расчетной точке по формуле 194

$$k_{p0} = 0.1 \sqrt{25 \cdot 0.81^2 + 21(0.45^2 + 0.59^2) + 13(0.35^2 + 0.35^2) + 3.5 \cdot 0.14^2} =$$

= 0.1 \sqrt{16.4 + 11.6 + 3.2 + 0.1} = 0.1 \sqrt{31.3} = 0.56.

Пример 61. Определить элементы волн $h, \bar{\lambda}, \bar{\tau}, h_{1\%}$ в мелководной зоне с уклонами дна 0,001 при скорости ветра W = 18 м/с, разгоне D = 50 км и глубине H = 7 м.

Решение.

Безразмерные величины $\frac{gD}{W^2} = \frac{9.8 \cdot 5 \cdot 10^4}{18^2} = 1512$ и $\frac{gH}{W^2} = \frac{9.8 \cdot 7}{18^2} = 0,212$. По рис. 116(38) находим $\frac{g\overline{h}}{W^2} = 0,027$ и $\frac{g\overline{\tau}}{W} = 2,1$, откуда $\overline{h} = \frac{0,027 \cdot 18^2}{9,8} = 0,9$ м, $\overline{\tau} = \frac{2,1 \cdot 18}{9,8} = 3,9$ с. По формуле 187(151) средняя длина волны $\overline{\lambda} = \frac{9.8 \cdot 3,9^2}{2.314} = 24$ м.

Далее, находим высоту волны однопроцентной обеспеченности $h_{1\%}$. По рис. 117(39) для кривой F = 1% снимаем значения коэффициентов $(k_i)_D = 2,16$ и $(k_i)_H = 2,22$, соответствующие ранее вычисленным значениям $\frac{gD}{W^2} = 1512$ и $\frac{gH}{W^2} = 0,21$.

Так как $(k_i)_D < (k_i)_H$, то по требованиям, приведенным в п. 19, коэффициент перехода от средних высот волн к высотам волн однопроцентной обеспеченности принимается равным $k_i=2,16$. Следовательно $h_{1\%}=2,16 \cdot 0,9=1,9$ м.

Пример 62. Определить превышение вершины волны однопроцентной обеспеченности над расчетным уровнем ($\eta_{\rm B}$)_{1%} в точке *P* мелководной зоны с глубиной *H*=7 м при скорости ветра *W*=18 м/с. Элементы волн в точке *P* $h_{1\%}$ =1,9 м, $\overline{\lambda}$ =24 м, $\overline{\tau}$ =3,9 с.

Решение.

Превышение вершины волны над расчетным уровнем $\eta_{\rm B}$ определяем по графику, приведенному на рис. 118(40).

Входными параметрами в график являются:

$$\frac{h_{1\%}}{g\tau^2} = \frac{1,9}{9,8\cdot3,9^2} = 0,0127, \quad \frac{H}{\overline{\lambda}} = \frac{7}{24} = 0,292.$$

Соответственно этим параметрам находим ($\eta_{\rm B}$)_{1%}/ $h_{1\%}$ =0,61, откуда ($\eta_{\rm B}$)_{1%} = 0,61 · 1,9 = 1,2 м.

Пример 63. Определить среднюю высоту волн \overline{h} в точке P мелководной зоны. Ветер постоянен по скорости и направлению. Скорость ветра W=25 м/с. Разгон D=8 км. Глубины переменны по разгону. Профиль дна вдоль линии разгона и направление ветра показаны на рис. 128.

Решение.

Расчет волн в мелководной зоне с учетом переменных глубин выполияем по рекомендациям, изложенным в п. 19 настоящего приложения. Начиная от подветренного берега акватории, профиль дна вдоль линии разгона разбиваем на участки с различными и примерно одинаковыми в пределах каждого участка уклонами дна (рис. 128).

В соответствии с п. 2 пояснений к п. 19 настоящего приложения входим в график, приведенный на рис. 116(38), со значениями параметров $\frac{gH_1}{W^2} = \frac{9.8 \cdot 8}{25^2} = 0.125$, $\frac{gD_1}{W^2} = \frac{9.8 \cdot 3000}{625} = 47,04$ и находим, что в кон-

це первого участка $\frac{g\bar{h}_2}{W^2} = 0,113$. Все расчеты ведем по рекомендациям для уклонов дна 0,001 и менее.

Для второго участка находим $\frac{gH_2}{W^2} = \frac{5 \cdot 9,8}{25^2} = 0,0784$. Вводя в тот же график отношения $\frac{gh_1}{W^2} = 0,0113$ и $\frac{gH_2}{W^2} = 0,0784$, снимаем величину дополнительного разгона $\frac{g\Delta D_1}{W^2} = 120$, которую складываем с относительным разгоном второго участка, и находим условный разгон для второго участка $\frac{g\Delta D_1}{W^2} + \frac{gD_2}{W^2} = 120 + 78,4 = 198,4$. Входим с условным

Рис. 128. Схема к определению элементов волн при переменных глубинах вдоль разгона.

разгоном в график и с учетом параметра $\frac{gH_2}{W^2} = 0,0784$ определяем $\frac{g\overline{h}_2}{W^2} = 0,012$, откуда находим искомую среднюю высоту волны $\overline{h}_2 = \frac{0,012 \cdot 25^2}{9.8} = 0,76$ м.

Элементы волн в прибойной зоне

20. Высоту волны в прибойной зоне $h_{\rm пр\,1\%}$, м, необходимо определять для заданных уклонов дна $(1:m_{\alpha})$ по графикам 2, 3 и 4 рис. 125(42) настоящего приложения; при этом по безразмерной величине $\frac{H}{\overline{\lambda}_{rn}}$ принимается значение $\frac{h_{\rm np\,1\%}}{g\tau^2}$. и соответственно определяется $h_{\rm np\,1\%}$. Длину волны в прибойной зоне $\overline{\lambda}_{\rm np}$, м, следует определять по верхней

огибающей кривой рис. 123 (41), а превышение вершины волны над расчетным уровнем η_{B} , м, — по верхней огибающей кривой рис. 118 (40) настоящего приложения.

Коэффициент перехода $k_{i\,\text{пр}}$ к высотам волн заданной i %-ной обеспеченности в прибойной зоне следует принимать по табл. 108.

Таблица 108

Обеспеченность высот волн <i>i</i> , %	0,1	1	2	5	13
Коэффициент k _{iпр}	1,15	1	0,95	0,9	0,85

21. Критическая глубина $H_{\rm Kp}$, м, при первом обрушении волн без учета рефракции должна определяться для заданных уклонов дна (1: m_{α}) по графикам 2, 3 и 4 рис. 125(42) настоящего приложения; при этом по безразмерной величине $\frac{h_i}{g\bar{\tau}^2}$ принимается значение $\frac{H_{\rm Kp}}{\bar{\lambda}_{\rm rg}}$ и соответственно определяется $H_{\rm Kp}$.

Критическую глубину с учетом рефракции волн необходимо определять методом последовательных приближений. По ряду задаваемых значений глубин H в соответствии с требованиями пп. 17 и 18 настоящего приложения определяются величины $\frac{h_l}{g\tau^2}$ и по графикам 2, 3 и 4 рис. 125(42) — соответствующие им значения $\frac{H_{\rm kp}}{T}$, из которых принимает-

ся Н_{кр}, численно совпадающее с одной из задаваемых глубин Н.

1. Критическая глубина при первом обрушении $H_{\rm kp}$ без учета рефракции определяется следующим образом:

полагают в первом приближении $\frac{h_l}{g\tau^2} = \frac{h_{r,1,1\%}}{g\tau^2}$ и определяют по рис. 125(42) с учетом уклона дна 1: m_{α} параметр $\frac{H_{\rm kp,1}}{\overline{\lambda}_{\rm r,n}}$ и глубину $H_{\rm kp,1}$;

принимают согласно требованиям п. 17 по рис. 125(42) и табл. 105(39) значения коэффициентов $k_{\rm T}$, $k_{\rm n}$ и — согласно требованиям п. 15— значение коэффициента $k_{1\%}$ (величина $k_{\rm p}=1$ по условию);

определяют по формуле 191 (153) высоту волны i %-ной обеспеченности h_i , полагая i=1 %;

принимают по рис. 125(42) и по значению параметра $\frac{\lambda_{l\,\%}}{g_{\tau}^2}$ с учетом уклона дна 1: m_{α} величину $\frac{H_{\kappa p}}{\bar{\lambda}_{r\pi}}$, откуда определяют $H_{\kappa p}$ (пример 64).

2. Критическую глубину при первом обрушении $H_{\rm kp}$ с учетом рефракции определяют методом последовательных приближений. При этом первое приближение выполняется так же, как и без учета рефракции, а последующие — с учетом коэффициентов рефракции $k_{\rm p}$, определяемых по требованиям, изложенным в п. 18. Расчет ведется до численного совпадения двух последовательно определенных $H_{\rm kp}$ (пример 65).

22. Критическую глубину, соответствующую последнему обрушению волн $H_{\rm km}$ при постоянном уклоне дна, следует определять по формуле

$$H_{\rm K\Pi} = k_m^{n-1} H_{\rm KP}, \qquad 195(155)$$

где k_m — коэффициент, принимаемый по табл. 109(40); n — число обрушений (включая первое), принимаемое из ряда n=2, 3 и 4 при выполнении неравенств

$$k_m^{n-2} \ge 0.43$$
 и $k_m^{n-1} < 0.43$.

При уклопах дна более 0,05 следует принимать значение критической глубины $H_{\rm KD} = H_{\rm KH}$.

Примечани с. При переменных уклонах дна допускается принимать $H_{\kappa\pi}$ по результатам последовательного определения критических глубин для участков дна с постоянными уклонами.

Таблица 109(40

Уклон дна 1: <i>т</i> _а	0,01	0,015	0,02	0,025	0,03	0,035	0,04	0,045	0,05
Коэффициент k _m	0,75	0,63	0,56	0,5	0,45	0,42	0,4	0,37	0,35

Критическую глубину, соответствующую последнему обрушению волн при переменных уклонах дна, определяют путем последовательного расчета критических глубин в прибойной зоне для участков дна с постоянными уклонами. Первая критическая глубина определяется в соответствии с п. 21. Вторая и последующие критические глубины определяются путем умножения глубины предыдущего обрушения на коэффициент k_m , принимаемый по табл. 109(40) в зависимости от уклопа того участка дна, где происходит предыдущее обрушение.

Глубина последнего обрушения

$$H_{\mathrm{KII}} = k_1 k_2 \dots k_{n-1} H_{\mathrm{KP}}, \qquad 196$$

должна удовлетворять условию

$$k_1 k_2 \ldots k_{n-1} < 0.43,$$

где *п* — число обрушений (включая первое). Таким образом расчет следует производить до тех пор, пока произведение коэффициентов не станет менее 0,43 (пример 67), но при этом оно не должно приниматься менее 0,35.

Высоты h_{пp 1%} и длины λ_{пр} волн, соответствующие критическим глубинам второго и последующих обрушений, определяются согласно п. 20. Коэффициент перехода kinp к высотам заданной обеспеченности следует принимать по табл. 108.

Пример 64. Определить критическую глубину H_{xp} при первом обрушении волн без учета рефракции ($k_p = 1$) и элементы волн в прибойной зоне $h_{\rm np\,1\%}$, $\bar{\lambda}_{\rm np}$, $\eta_{\rm np}$ при глубине H = 5 м. Высоты волн $h_{\rm ra\,1\%} = 6,5$ м, $\bar{h}_{\rm ra} = 3$ м, длина волн $\bar{\lambda}_{\rm ra} = 76$ м, период волн $\bar{\tau} = 7$ с. Уклон дна 0,02.

Решение.

По рис. 125(42), полагая в первом приближении $\frac{h_i}{\sigma \tau^2} = \frac{h_{r,a,1\%}}{\sigma \tau^2} = -\frac{h_{r,a,1\%}}{\sigma \tau^2}$ $=\frac{6,5}{9.8,72}=0,0135$, с учетом уклона дна $1:m_{\alpha}=0,02$ определяем $\frac{H_{\text{кр I}}}{\lambda_{\text{гл}}} = 0,115$, откуда $H_{\text{кр I}} = 0,115 \cdot 76 = 8,7$ м. Согласно требованиям, ^{$h_{r,r}$} изложенным в п. 17, при параметре $\frac{H_{kp\,I}}{\bar{\lambda}_{r,r}} = 0,115$ принимаем по рис. 125(42) и табл. 105(39) значения коэффициентов $k_r = 0,925$ и $k_n = 0,87$, а по условиям примера находим $k_{1:\%} = \frac{h_{r,n\,1:\%}}{\bar{h}_{r,n}} = \frac{6,5}{3} = 2,16$. По формуле 191(153) находим $(h_{1:\%})_I = 0,925 \cdot 1,0 \cdot 0,87 \cdot 2,16 \cdot 3 = 5,2$ м

при глубине $H_{\kappa p I} = 8,7$ м.

По рис. 125(42), принимая $\frac{h_l}{g\bar{\tau}^2} = \frac{(h_{1\%})_{\rm I}}{g\bar{\tau}^2} = \frac{5.2}{9.8\cdot7^2} = 0,011$, с учетом уклона дна 1: $m_a = 0,02$ определяем $\frac{H_{\text{кр}}}{\bar{h}_{\text{гл}}} = 0,09$, откуда исходная кри-тическая глубина $H_{\text{кр}} = 0,09 \cdot 76 = 6,8$ м. Данное приближение следует считать окончательным.

Высоту прибойной волны $h_{np\,1\%}$ для глубины H = 5 м определяем по рис. 125(42). Вычисляем параметр $\frac{H}{\overline{\lambda}_{rs}} = \frac{5}{76} = 0,066$ и снимаем ординату $\frac{h_{\text{пр 1}\%}}{\sigma\tau^2} = 0,008$, откуда $h_{\text{пр 1}\%} = 0,008 \cdot 9,8 \cdot 7^2 = 3,8$ м.

Длину прибойной волны $\overline{\lambda}_{np}$ определяем по верхней огибающей кривой рис. 123(41): отношению $\frac{H}{\overline{\lambda}_{p,n}} = 0,066$ соответствует значение $\frac{\overline{\lambda}_{np}}{\lambda_{r,n}} = 0,74$, откуда $\overline{\lambda}_{np} = 0,74 \cdot 76 = 56$ м.

Превышение вершины прибойной волны над расчетным уровнем определяем по верхней огибающей кривой рис. 118(40). Входными параметрами в график являются $\frac{h_{np 1\%}}{\overline{gr^2}} = 0,008$ и $\frac{H}{\overline{\lambda}_{rn}} = 0,066$; ордината, соответствующая этим параметрам $\eta_{\rm B}/h_{np 1\%} = 0,84$, откуда $\eta_{\rm B} =$ $= 0,85 \cdot 3,8 = 3,2$ M,

Пример 65. Определить критическую глубину при первом обрушении $H_{\kappa p}$ с учетом рефракции волн. Высота волн $h_{ra1\%} = 6,5$ м, $h_{r,n} = 3,0$ м, длина волн $\bar{\lambda}_{r,n} = 76$ м, период волн $\tau = 7$ с. Уклон дна 0,02. Значения коэффициентов рефракции на глубинах: H = 10 м, $k_p = 0.9$; H = 8 м, $k_p = 0.7$; H = 6 м, $k_p = 0.7$; H = 4 м, $k_p = 0.4$; H = 2 м, $k_{\rm n} = 0.5$.

Решение.

В первом приближении, полагая $\frac{h_l}{g\bar{\tau}^2} = \frac{h_{r,1.1\%}}{g\bar{\tau}^2} = \frac{6,5}{9,8.7^2} = 0,0135,$ учетом уклона дна $1:m_{\alpha} = 0,02$ определяем по рис. 125(42) $\frac{H_{\text{кр I}}}{\bar{\lambda}_{\text{гл}}} = 0,115$, откуда $H_{\text{кр I}} = 8,7$ м.

Во втором приближении по рис. 125(42) и табл. 105(39) прини-Во втором приближении по рис. 120(42) и 1200. 100000, лр..... маем с учетом параметра $\frac{H_{\text{кр}\,I}}{\bar{\lambda}_{r,n}} = 0,115$ значения коэффициентов $k_r = 0,925$, $k_n = 0,87$ и по условиям примера находим $k_p \approx 0,8$ (по ин-терполяции для глубины $H_{\text{кр}} = 8,7$ м) и $k_{1\%} = \frac{h_{ra\,1\%}}{\bar{h}} = \frac{6,5}{3,0} = 2,16$. По формуле 191(153) $(h_{1\%})_I = 0,925 \cdot 0,87 \cdot 2,16 \cdot 3 \cdot 0,8 = 4,2$ м при глубине $H_{\text{кр}\,I} = 8,7$ м. По рис. 125(42) при $\frac{(h_{1\%})_I}{\bar{g}\tau^2} = \frac{4,2}{9,8 \cdot 49} = 0,0088$ и

уклоне дна 1: $m_{\alpha} = 0,02$ принимаем $\frac{H_{\kappa p | II}}{\lambda_{\pi \alpha}} = 0,072$, откуда $H_{\kappa p | II} =$

 $\lambda_{r\pi}$ откуда $H_{\kappa p \ II} = \lambda_{r\pi}$ В третьем приближении определяем по рис. 125(42) и табл. 105(39) значения $k_r = 0.96$, $k_\pi = 0.87$ и по условиям примера $k_{1\%} = 2.16$ и $k_p = 0.63$ (при H = 5.5 м). Высота волны $(h_{1\%})_{II} = 0.96 \cdot 0.82 \cdot 0.63 \cdot 2.16 \cdot 3 = 3.3$ м. По рис. 125(42), принимая $\frac{(h_{1\%})_{II}}{g\tau^2} = \frac{3.3}{9.8 \cdot 49} = 0.007$, получаем $\frac{H_{\kappa p \ III}}{\lambda_{r\pi}} = 0.06 \ M H_{\kappa p \ III} = 4.5 \ M.$

В четвертом приближении, выполнив аналогичные вычисления, получаем h1%=0,99.0,81.0,63.2,16.3=3,3 м, H_{кр IV}=4,5 м. Таким образом, третье приближение является окончательным, и в качестве расчетной принимается глубина Н_{кр}=4,5 м.

Пример 66. Определить критическую глубину, соответствующую створу последнего обрушения волн $H_{\rm km}$ при постоянном уклоне дна 0,02. Критическая глубина в створе первого обрушения $H_{\rm kp} = 7$ м.

Решение.

Критическую глубину Нкп, соответствующую последнему обрушению волн при постоянном уклоне, определяем по формуле 195(155). Коэффициент $k_m = 0,56$ при уклоне дна 0,02 принимаем по табл. 109 (40). Полагаем n=2 и проверяем соотношения $k_m^{n-2} = 1 > 0,43$, $k_m^{n-1} = 0,56$. Не равенства п. 22 не выполняются. Подставляя n=3, находим $k_m^{n-2} = =0,56>0,43, k_m^{n-1} = 0,56^2 = 0,315<0,43$. Следовательно, n=3, т. е. возможны три обрушения. Далее, подставляя в формулу 195(155) k_m=0,315, находим $H_{\rm KII} = 0.315 \cdot 7 = 2.2$ м.

Пример 67. Определить критическую глубину Нкп соответствующую последнему обрушению волн при переменных уклонах дна (рис. 129) и при элементах волн, заданных в примере 64.

Критическая глубина первого обрушения $H_{\rm KD} = 6,8$ м.

Высота волны на глубине первого обрушения h % = 5,2 м (пример 64).

Первое обрушение волны произойдет на участке дна с уклоном 0,01 (рис. 129). По табл. 109(40) при 1 : m = 0.01 находим $k_1 = 0.75$.

13*

Согласно п. 22 определяем критическую глубину второго обрушения $H_{\text{sp2}} = k_1 H_{\text{sp1}} = 0.75 \cdot 6.8 = 5.1 \text{ м.}$

Второе обрушение произойдет после первого перелома профиля на участке дна с уклоном 0,02, которому по табл. 109(40) соответствует коэффициент $k_2 = 0.56$. Следовательно, критическая глубина третьего обрушения будет равна $H_{\text{кр3}} = k_2 H_{\text{кр2}} = k_1 \cdot k_2 \cdot H_{\text{кр1}} = 0.75 \cdot 0.65 \cdot 6.8 = 2.9$ м.

Рис. 129. Схема профиля дна для определения критической глубины Нкп при переменных уклонах.

Критическая глубина $H_{\text{кр3}}$ принимается глубиной последнего обрушения волн, так как произведение коэффициентов k_m удовлетворяет условию п. 22: $k_1 \cdot k_2 = 0.42 < 0.43$.

Элементы волн на огражденной акватории

23. Высоту дифрагированной волны *h*_д, м, на огражденной акватории необходимо определять по формуле

$$h_{\rm A} = k_{\rm A} h_i, \qquad 197(156)$$

где $k_{\rm H}$ — коэффициенг дифракции волн, определяемый согласно требованиям пп. 24, 25 и 26 настоящего приложения; h_i — высота исходной волны *i* %-ной обеспеченности.

В качестве расчетной принимается исходная длина волны λ на входе де в акваторию.

При расчете элементов волн на огражденных акваториях в качестве исходных следует принимать волны открытой акватории вне зоны влияния оградительных сооружений, а именно: при ограждении одиноч-

Рис. 130 (44). Графики для определения значений коэффицие_{нтов кдо}.

ным молом — на фронте волны, проходящем через голову мола, а при ограждении акватории двумя молами — на фронте волны, проходящем через голову ближайшего со стороны моря мола.

Очертание фронта волны, дифрагированной около голов оградительных сооружений, должно приниматься:

а) в зоне волновой тени — по окружности с центром в голове сооружения и радиусом, равным расстоянию от головы до расчетной точки;

Рис. 131 (45). Графики значений коэффициентов ψ_{ск}.

б) вне зоны волновой тени — по прямой, нормальной к исходному лучу волн.

24. Коэффициент дифракции волн k_{до} для акватории, огражденной одиночным молом (при заданном значении угла β, град, относительного расстояния от головы мола

до точки в расчетном створе $\frac{r}{\lambda}$ и значении угла φ , град), следует принимать в соответствии со схемой и графиками рис. 130(44) согласно

штриховой линии со стрелками. 25. Коэффициент дифракции волн k_{дс} на акватории, огражденной сходящимися молами, пеобходимо определять по формуле

$$k_{\rm AC} = k_{\rm A0} \psi_{\rm CX},$$
 198(157)

где ψ_{ex} — коэффициент, принимаемый по рис. 131 (45) для данных значений величин C_{rx} и k_{dr} .

Величина C_{rx} определяется по формуле

$$C_{\rm rx} = \frac{A_1 + A_2 + B}{2B},$$
 199(158)

где A₁ и A₂ — расстояния от границы волновой тени (ГВТ) до границы дифракции волн (ГДВ), принимаемые в соответствии со схемой и графиками рис. 132(46) согласно штриховой линии со стрелками;

В — ширина входа в порт, м, принимаемая равной проекции расстояния между головами молов на фронт исходной волны.

Значение коэффициента $k_{\rm дr}$ определяется так же, как и коэффициента $k_{\rm дo}$, согласно требованиям п. 24 настоящего приложения для точки пересечения главного луча с фронтом волн в расчетном створе.

Положение главного луча на схеме рис. 132 (46), а необходимо принимать по точкам, расположенным от границы волновой тени (ГВТ) мола с меньшим углом φ , град, на расстояниях x, м, определяемых по формуле

$$x = \frac{A_1 E_2 - E_1 (A_2 - B)}{E_1 + E_2},$$
 200(159)

где E_1 и E_2 — коэффициенты, принимаемые.в соответствии со схемой и графиками рис. 132(46).

26. Коэффициент дифракции волн k_{дв} для акватории, огражденной волноломом, должен определяться по формуле

$$k_{\rm gB} = \sqrt{k_{\rm g1}^2 + k_{\rm g2}^2}, \qquad 201(160)$$

где $k_{\pi 1}$ и $k_{\pi 2}$ — коэффициенты дифракции волн, определяемые соответственно для головных участков волнолома согласно требованиям п. 24 настоящего приложения.

27. Высоту дифрагированной волны с учетом отражения ее от сооружений и преград h_{дот}, м, в данной точке огражденной акватории необходимо определять по формуле

Рис. 132 (46). Схема и графики для определения величин А и Б.

199

$$h_{\text{AOT}} = (k_{\text{A}} + k_{\text{OT}}) h_{l},$$
 202(161)

где

$$k_{\rm oT} = k_{\rm AO} k_{\Delta} k_{\rm HII} k_{\rm oT}' e^{-\theta_{\rm o} 0.08 \frac{1}{\lambda}} \sqrt{\cos \theta_{\rm o}}; \qquad 203(162)$$

 k_{ло} — коэффициент дифракции в створе отражающей поверхности, определяемый согласно требованиям пп. 24, 25 и 26 настоящего приложения;
 к_л п к_{нп} — коэффициенты, определяемые согласно требованиям п. 2.14 настоящей

- . . To

, и к_{ип} — коэффициенты, определяемые согласно треоованиям п. 2.14 настоящей главы;

00 — угол между фронтом волны и отражающей поверхностью, град;

Пологость волны 🚡	Значения А жающей	Значения k _{от} ' при уклонах отра- жающей поверхности (1: m _a)								
^h д	1	0,5	0,25							
10 15 20 30 40	0,5 0,8 1 1 1	0,02 0,15 0,5 0,7 0,9	0,0 0,0 0,05 0,18							

7	аблица	110	(41)
	womunu	110	

- относительное расстояние от

отражающей поверхности до расчетной точки по лучу отраженной волны; при этом направление луча отраженной волны должно приниматься из условия равенства углов подхода и отражения волн;

k_{от}' — коэффициент отражения, принимаемый по табл. 110(41); при угле наклона отражающей поверхности к горизонту более 45 градусов следует принимать коэффициент отражения k_{от}' = 1.

Примечание. Высоту волны на огражденной акватории с меняющимися глубинами допускается уточнять согласно требованиям пп. 17 и 18 настоящего приложения при надлежащем обосновании.

В качестве расчетной принимается исходная длина волны $\overline{\lambda}$ на входе в акваторию.

При пологостях

волн $\frac{\overline{h_{\pi}}}{h_{\pi}} \ge 50$ и 1: $m \approx \ge 0,5$ значение коэффициента $k'_{\text{от}}$ принимается равным 1.

Положение на отражающей поверхности точек отражения, от которых лучи набегающих волн проходят через расчетные точки, несбходимо определять следующим образом.

За отражающей поверхностью или ее продолжением следует построить зеркальное отображение расчетных точек и провести в эти точки волновые лучи из

Рис. 133. Определение точек отражения

I, II, III-отражающие поверхности; I, 2-расчетные точки; $I'_{I'}$ $2'_{I'}$ зеркальные отображения расчетных точек за отражающей поверхностью I; I_{II} , 2_{II} -зеркальные отображения расчетных точек за отражающей поверхностью II; I_{I} , 2_{I} , I_{II} , 2_{II} -точки отражения на I и II поверхности.

головы мола. Точки отражения определяются в местах пересечения лучей с отражающей поверхностью (рис. 133).

Пример 68. Определить коэффициенты дифракции и высоты волн в расчетных точках 1, 2 акватории, огражденной одиночным молом (рис. 134). Глубина H постоянна. Элементы волн на подходах к порту: $h_{5\%} = 3.9$ м, $\overline{\lambda} = 60$ м.

Решение.

Через голову мола проводим луч исходного направления волнения (границу волновой тени) и определяем угол φ между границей волновой тени и осью мола ($\varphi = 102^{\circ}$). Находим относительные расстояния $\frac{r}{\lambda}$ от исходного фронта волны до расчетных точек и углы β между границей волновой тени и линиями, проведенными от головы мола на расчетные точки.

Ные почки. Используя данные $\frac{r}{\overline{\lambda}}$, φ и β , по номограмме рис. 130 (44) согласно ключу определяем для каждой расчетной точки эначение коэффициента дифракции $k_{до}$ и высоты волн. Все данные сводим в табл. 111.

Пример 69. Определить коэффициенты дифракции $k_{\rm дc}$ в расчетных точках акватории, огражденной сходящимися молами (рис. 135, *a*, *б*). Глубина *H* постоянна. Элементы волн на подходе к порту $h_{5\%}=3,9$ м, $\overline{\lambda}=$

Рнс. 134. Схема к определению коэффициентов дифракции на акватории, огражденной одиночным молом *I*-луч исходных волн; *II*-граница волновой тени; *III*-граница дифракции; *IV*-фронт волны.

=60 м. Ширина входа в порт B=285 м.

Таблица 111

№ точек	<i>Г</i> , М	$\frac{r}{\bar{\lambda}}$	β, град	k _{A0}	h_=h_5% k_10	
$\frac{1}{2}$	720 1260	12 21	$\begin{array}{c} 65\\ -2 \end{array}$	0,09 0,73	0,35 2,9	

Решение.

Определение коэффициентов дифракции волн $k_{\rm дc}$ на акватории, огражденной сходящимися молами, производим в нижеуказанном порядке. а) Построение границ волновой тени.

Через головы молов проводим лучи, параллельные лучам исходных волн. Эти лучи и являются границами волновой тени ΓBT (рис. 135, *a*). Определяем углы между границами волновой тени и осями молов. Меньший угол обозначен через φ_1 , а больший — через φ_2 . Согласно рис. 135, $a \varphi_1 = 50^\circ$ и $\varphi_2 = 102^\circ$.

б) Построение границ дифракции.

Через расчетные точки 1, 2, 3 в соответствии с п. 23 проводим расчетные створы I, II, III. Измеряем расстояния r_1 от головы мола 1 и r_2 от головы мола 2 до расчетных створов I, II и III (на рис. 135, *а* эти расстояния обозначены через $(r_1)_{I}$, $(r_1)_{II}$, $(r_1)_{III}$ н $(r_2)_{I}$, $(r_2)_{II}$, $(r_2)_{III}$. Вычисляем относительные расстояния $\frac{r_1}{\overline{\lambda}}$ и $\frac{r_2}{\overline{\lambda}}$ и далее по этим расстояниям и углам φ_1 и φ_2 , соответственно, находим по графикам, приведенным на рис. 132(46), значения относительных величин $\frac{A_1}{\overline{\lambda}}$, $\frac{A_2}{\overline{\lambda}}$ и определяем расстояния A_1 и A_2 . Откладываем полученные значения A_1 по нормали к *ГВТ* мола I вдоль расчетных фронтов [$(A_1)_1$, $(A_1)_{11}$, $(A_1)_{11}$]. Полученные точки соединяем линией с головой мола и находим границу дифракции для мола 1 (рис. 135, *a*). Аналогично по значениям A_2 проводим границу дифракции для мола 2. Расчеты по определению границ дифракции молов 1 и 2 сведены в табл. 112.

Рис. 135. Схемы а-к построению расчетных створов (1, 11, 111) границ дифракции и главного луча; б-к определению коэффициентов дифракции на акватории, огражденной сходящимися молами.

Таблица 11	12
------------	----

Расчетные створы	<i>г</i> ₁ , м	12, M	$\frac{r_1}{\vec{\lambda}}$	$\frac{r_2}{\bar{\lambda}}$	$\frac{A_1}{\overline{\lambda}}$	$\frac{A_2}{\overline{\lambda}}$	А ₁ , м	А2, М
I	795	720	13,25	12,0	5,7	5,8	342	348
II	1203	1128	20,05	18,8	7,7	7,7	462	462
III	1335	1260	22,25	21,0	8,1	8,1	486	486

в) Построение главного луча.

По графикам, приведенным на рис. 132(46), для каждого отношения $\frac{r_1}{\overline{\lambda}}$ и $\frac{r_2}{\overline{\lambda}}$ находим значения $\frac{\mathcal{B}_1}{\overline{\lambda}}$ и $\frac{\mathcal{B}_2}{\overline{\lambda}}$ и определяем величины \mathcal{B}_1 и \mathcal{B}_2 . По вычисленным величинам A_1 , A_2 , \mathcal{B}_1 , \mathcal{B}_2 и заданному значению \mathcal{B} определяем по формуле 200(159) величины x для каждого расчетного створа. Откладываем значения x (x_1 , x_{11} , x_{11}) вдоль расчетных створов по нормали к ΓBT для мола с меньшим углом φ (мол 1 на рис. 135, a). Соединяем полученные точки и точку пересечения границ дифракции \mathcal{P} линией, которая и является главным лучом. Точки пересечения расчетных створов с главным лучом обозначим через a, 6, e (рис. 135, a). Главный луч делит акваторию на две зоны, волновой режим которых определяется дифракцией за соответствующим молом. Главный луч также отвечает максимальным высотам волн в любом расчетном створе. Расчеты по определению положения главного луча сводим в табл. 113.

I WUMUUU III	<i>иолица</i> 11	J
--------------	------------------	---

Расчетные створы	$\frac{r_1}{\bar{\lambda}}$	$\begin{array}{c c} \underline{r_3} \\ \overline{\lambda} \\ \hline \end{array} \begin{array}{c} \underline{\mathcal{F}_1} \\ \overline{\lambda} \\ \hline \end{array}$		$\frac{B_2}{\tilde{\lambda}}$	Б1, м	<i>Б</i> 2, м	х, м
I	13, 2 5	12,0	3,3	3,0	198	180	130
II	20,05	18,8	4,5	4,2	270	252	131
III	22, 2 5	21,0	4,9	4,7	294	282	135

г) Определение коэффициентов дифракции волн k_{дс}.

Определим углы β_a , β_b , β_b между *ГВТ* одного из молов и направлением лучей из головы мола на точки *а*, *б*, *в*. На рис. 135, *б* построение выполнено для мола 2. Углы отрицательные, так как отсчет ведется от *ГВТ* в сторону границы дифракции.

По рис. 130 (44), используя найденные значения $\frac{r_2}{\bar{\lambda}}$, φ_2 и соответствующие углы β_a , β_6 , β_6 , определяем коэффициенты дифракции $k_{\rm AF}$ для точек *a*, *b*, *b*. Обозначим углы, измеренные между *ГВТ* мола 2 и направлением лучей от головы мола на расчетные точки *1* и 2, через β_1 и β_2 , а угол между *ГВТ* мола 1 и лучом из головы мола на расчетную точку *3* через β_3 . Углы β_1 , β_2 , β_3 положительные, так как отсчет ведется от *ГВТ* в сторону зоны волновой тени. Определяем по рис. 130 (44) коэффициенты дифракции $k_{\rm дo}$ для расчетных точек *1* и *2* по значениям $\frac{r_2}{\bar{\lambda}}$, φ_2 и β_1 , β_2 , а для точки *3* — по $\frac{r_1}{\bar{\lambda}}$, φ_1 и β_3 . По формуле 199 (158) находим величины коэффициентов $C_{\rm rx}$, принимая значения A_1 , A_2 (из табл. 112) и заданную величину *B*. Значения коэффициента $\psi_{\rm cx}$ определяем по рис. 131 (45), принимая вычисленные значения коэффициентов $k_{\rm Rr}$ и $C_{\rm rx}$. Коэффициенты дифракции $k_{\rm дc}$ определяем по формуле 198 (157). Расчеты по определению коэффициентов дифракции $k_{\rm дc}$ в точках *1*, *2*, *3* сводим в табл. 114.

Таблица	114
---------	-----

Ном точ расчет- ных	ера ек на главном луче	<u>r:</u> ī	$\frac{r_2}{\overline{\lambda}}$	^β 1, 2, 3, град	^β а, б, в, град	k _{ao}	k _{дг}	А1,-М	А₂, м	C _{FX}	ψ _{cx}	k _{ac}
1	а	13,25	12,0	65	12	0,09	0,91	342	348	1,68	0,95	0,085
2	б	20,05	18,8	25	8	0,24	0,86	462	462	2,1	0,88	0,21
3	в	22,25	21,0	7	7	0,52	0,82	486	486	2,21	0,84	0,44

Пример 70. Определить высоту дифрагированной волны $h_{дот}$ с учетом отражения ее от внутреннего контура акватории (рис. 136). Глубина *Н* постоянна. Расчет производится для точки 1. Откос имеет бетонное покрытие. Уклон отражающей поверхности $1: m_{\alpha} = 0,5$. Элементы волн на подходах к порту $h_{1\%} = 4,0$ м. $\lambda = 60$ м.

Решение.

а) Определение точек отражения.

Согласно схеме, приведенной на рис. 136, дифрагированная волна отражается от участков AB и CA, а по участку OC она скользит, не от-

Рис. 136. Схема к определению высоты дифрагированной волны с учетом ее отражения от внутреннего контура акватории.

ражаясь. Точки отражения волн на участках AB и CД, из которых луч после отражения пройдет через расчетную точку 1, определяют в соответствии с рис. 136 и обозначают 1_{AB} и 1_{CD} ;

б) Определение коэффициентов дифракции kor.

Коэффициенты дифракции k_{or} с учетом отражения рассчитывают по формуле 203(162), предварительно вычисляя коэффициенты $k_{дo}$, k_{Δ} , k_{III} и k'_{or} для отражающих поверхностей AB и $C\mathcal{I}$.

Для определения коэффициентов $k_{до}$ выполняют следующие построения. Из головы мола в точки отражения l_{AB} и l_{CD} проводят лучи r_{AB} и r_{CD} и далее из точек l_{AB} и l_{CD} в точку $l — лучи (r_0)_{AB}$ и $(r_0)_{CD}$. Углы между ΓBT и лучами r_{AB} и r_{CD} обозначают через β_{AB} и β_{CD} (рис. 136). Коэффициенты дифракции $k_{до}$ в створе отражающих поверхностей AB и $C\mathcal{I}$ (в точках l_{AB} и l_{CD}) находим по рис. 130 (44), используя отношение $\frac{r_{AB}}{\overline{\lambda}}, \frac{r_{CD}}{\overline{\lambda}}$ и углы φ , β_{AB}, β_{CD} .

Коэффициенты k_{Δ} и $k_{\rm HII}$ определяют согласно требованиям п. 2.14 СНиП. II-57-75. Для бетонного покрытия (по условиям примера) $k_{\Delta} = 1$, а $k_{\rm HII} = 0.9$.

Коэффициенты k_{or}' в соответствии с требованиями п. 27 при $\frac{\bar{\lambda}}{h_{a}} \ge 50$ и 1: $m_{\alpha} \ge 0,5$ равны единице. Подставляя значения коэффициентов k_{ao} , k_{λ} , $k_{нп}$, k_{or}' , а также величины $\frac{r_{0}}{\bar{\lambda}}$ и угол θ_{0} в формулу 203(162), находим значения k_{or} . Расчеты по определению коэффициентов k_{or} сводим в табл. 115.

Таблица 115

Отра- жающая поверх- ность	φ, град	Г, М	$\frac{r}{\bar{\lambda}}$	β, град	k _{AO}	ћ _д , м	k _A	k _{HII}	$\frac{\tilde{\lambda}}{h_{\mathcal{A}}}$	^к от′	θ _о , град	cos 0 ₀	ř _о , М	$\frac{r_0}{\overline{\lambda}}$	k _{or}
АВ	102	1400	23,3	20	0,29	1,16	1	0,9	. 5 2	1	10	0,985	276	4,6	0,17୨
СД	102	510	8,5	76	0,09	0,36	1	0,9	16 7	1	52	0,616	900	15	0,01୨

в) Определение высоты дифрагированной волны *h*_{дот} с учетом отражения.

В расчетной точке 1 пересекаются три системы воли: набегающая и две отраженные от поверхностей AB и $C\mathcal{A}$. Коэффициент дифракции k_{π} набегающей волны в точке 1 определяем по рис. 130(44), используя величины $\frac{r_1}{\tilde{\lambda}}$, φ и β_1 , где β_1 — угол между ΓBT и лучом r_1 из головы мола на точку 1 (рис. 136); получаем k_{π} =0,25. В качестве расчетной величины $k_{\text{от}}$ для отраженных волн из двух вычисленных значений примем наибольшую $k_{\text{от}}$ =0,179 (табл. 115). Расчетная высота волны по формуле 202(161) $h_{\text{дот}}$ = (0,25+0,179) · 4,0 м=1,7 м.

Приложение 2

ТЕРМИНОЛОГИЯ И ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ

Терминология

Гравитационные ветровые волны — вызванные ветром волны, в формировании которых основную роль играет сила тяжести.

Элементы волны (основные) — высота, длина и период волны.

Нерегулярные волны — волны, элементы которых изменяются случайным образом.

Регулярные волны — волны, элементы которых не изменяются.

Поступательные (бегущие) волны — волны, видимая форма которых перемещается в пространстве.

Стоячие волны — волны, видимая форма которых в пространстве не перемещается.

Система волн — ряд последовательных волн, имеющих одно происхождение.

Профиль волны (главный) — линия пересечения взволнованной поверхности с вертикальной плоскостью в направлении луча волн (рис. 137 (47)).

Средняя волновая линия — линия, пересекающая запись волновых колебаний так, что суммарные площади выше и ниже этой линии одинаковы. Для регулярной волны — горизонтальная линия, проведенная на уровне полусуммы отметок ее вершины и подошвы.

Гребень волны — часть волны, расположенная выше средней волновой линии.

Вершина волны — наивысшая точка гребня волны.

Ложбина волны — часть волны, расположенная ниже средней волновой линии.

Подошва волны — наинизшая точка ложбины волны.

Высота волны — превышение вершины волны над соседней подошвой на волновом профиле. Длина волны — горизонтальное расстояние между вершинами двух смежных гребней на волновом профиле.

Период волны — интервал времени между прохождением двух смежных вершин волн через фиксированную вертикаль.

Фронт волны — линия на плане взволнованной поверхности, проходящая по вершинам гребня данной волны.

Луч волны — линия, перпендикулярная фронту волны в данной точке.

Рис. 137 (47). Профиль и элементы волны.

Скорость волны — скорость перемещения гребня волны в направлении ее распространения.

Расчетный шторм — шторм, наблюдающийся один раз в течение заданного ряда лет (25, 50 и 100) с такой скоростью, направлением, разгоном и продолжительностью действия ветра, при которых в расчетной точке формируются волны с максимальными за этот ряд элементами.

Расчетная скорость ветра (при определении элементов волн) — скорость ветра на высоте 10 м над уровнем воды.

Расчетный уровень воды — уровень, назначаемый с учетом сезонных и годовых колебаний, ветрового нагона воды, приливов и отливов.

Разгон волн — протяженность охваченной ветром акватории, измеренная по направлению ветра.

Основные буквенные обозначения

W-скорость ветра, м/с;

¬в — превышение вершины волны над расчетным уровнем, м;

η_п — понижение подошвы волны от расчетного уровня, м;

h — высота волны, м;

 $k = \frac{2\pi}{\lambda}$ — волновое число, рад/м;

τ — период волны, c;

 $\sigma = \frac{2\pi}{\pi}$ — частота волны, рад/с;

с — скорость волны, м/с;

<u>—</u> — крутизна волны;

 $\frac{h}{h}$ — пологость волны;

 h_i , λ_i , τ_i — соответственно высота, длина и период волн l%-ной обеспеченности в системе;

ћ, λ, τ — соответственно средние высота, длина и период волн;

- Н-глубина воды при расчетном уровне, м;
 - H_{кр} критическая глубина воды, при которой происходит первое обрушение волн, м;
 - $H_{\rm kn}$ глубина воды, при которой происходит последнее обрушение волн, м; Q волновая нагрузка на сооружение (преграду), тс;
 - P-волновая нагрузка на единицу длины сооружения (преграды), тс/м;
 - *p* волновое давление, тс/м²;
 - γ объемный вес воды, тс/м³;
 - g ускорение силы тяжести, м/с²;

 $m_{\alpha} = \operatorname{ctg} \alpha$, где $\dot{\alpha}$ — угол наклона откоса (или дна) к горизонту;

 $(1:m_{\alpha}) = tg \alpha - y$ клон дна;

Hoc ctg a — заложение откоса, где Hoc — высота откосного сооружения.

Цополнение 1

ОПРЕДЕЛЕНИЕ ВОЛНОВЫХ НАГРУЗОК НА КРУТОНАКЛОННЫЕ СТЕНКИ ПРИ ДЕИСТВИИ СТОЯЧИХ ВОЛН

Волновые нагрузки на сооружения типа крутонаклонной стены, наклоненной к горизонту под углом α , удовлетворяющем неравенству 90°> $\alpha \ge 45°$, могут быть определены излагаемым ниже приближенным методом.

1. В соответствии с требованиями, изложенными в пп. 2.3 и 2.4, вычисляются ординаты эпюры волнового давления *p*, тс/м², для сооружения вертикального профиля. Это давление принимается перпендикулярным к передней грани стенки при любом ее наклоне.

Рис. 138. Эпюры волнового давления при подходе гребия волны а-горизонтального на вертикальную стену; б-горизонтального на крутонаклонную стену; в-вертикального на крутонаклонную стену (вниз); г-взвешивающего (вверх); ординаты давлений в тс/м³.

2. Горизонтальная и вертикальная составляющие волнового давления на сооружение с наклонной передней гранью определяются соответственно по формулам:

$$v_{xa} = p \sin a;$$
 204

$$p_{za} = p \cos a, \qquad 205$$

где *р* и *а* — указанные выше величнны.

Пример 71. Определить волновые нагрузки на крутонаклонную стену затвора (рис. 138 и 139).

Исходные данные: высота волны h=3,0 м; средняя длина волны $\overline{\lambda}=60,0$ м; глубина заложения низа затвора $H_{\pi}=20,0$ м; нижняя часть стены, высотой 14,0 м, наклонена к горизонту под углом 45°, верхняя — 75°; общая высота стены 26 м.

Решение.

1. Ведя расчет как для сооружения вертикального профиля, определяем тип волнового режима при заданных элементах расчетной волны и глубине перед сооружением.

Так как рассматриваемое сооружение не имеет бермы, то понятие глубины над бермой H_6 утрачивает смысл, и при определении типа волнового режима может быть заменено значением глубины заложения низа затвора $H_{\rm m} = H = 20$ м.

Тогда в соответствии с п. 2.1 перед сооружением наблюдается режим стоячих волн, так как

$$H_{\rm A} = 20.0 \text{ m} > 1.5 \cdot h = 1.5 \cdot 3.0 = 4.5 \text{ m},$$

И

$$H_{\rm E} = H_{\rm II} = 20,0 \,\,{\rm M} > 1,25 \cdot h = 3,75 \,\,{\rm M}.$$

Рис. 139. Эшюры волнового давления при подходе ложбины волны а-горизонтального на вертикальную стену; б-горизонтального на крутонаклонную стену; вертикального на крутонаклонную стену (вверх); взвешнвающего (вниз); ординаты давлений в тс/м³.

В связи с отсутствием бермы расчетная глубина H также принимается равной глубине заложения низа затвора, т. е. $H = H_{\pi} = 20,0$ м. 2. По формуле 3(3)

$$\cos \sigma t = \frac{60}{3,14 \cdot 3,0 \left(8 \cdot 3,14 \frac{20}{60} - 3\right)} = 1,185 > 1.$$

Согласно примечанию к п. 2.2 при соз $\sigma t > 1$ принимаем в дальнейших расчетах соз $\sigma t = 1$. Следовательно, при определении волновых нагрузок на затвор со стороны открытой акватории достаточно рассмотреть два расчетных момента времени, соответствующих моментам подхода к стене:

вершины волны с возвышением $\eta_{\rm B}$ над расчетным уровнем и одновременным наступлением максимума горизонтальной силы волнового давления $p_{\rm XF}$ при соз $\sigma t = 1$;

подошвы волны с понижением η_{II} от расчетного уровня при $\cos \sigma t = -1$.

3. В соответствии с формулой 2(2) при $k = \frac{2\pi}{\lambda} = \frac{6,28}{60} = 0,105$ и при

 \dot{c} os $\sigma t = 1$ возвышение вершины волны над расчетным уровнем воды

$$\eta_{\rm r} = \eta_{\rm B} = -3.0 \cdot 1 - \frac{0.105 \cdot 3.0^2}{2} \, {\rm cth} \, (0.105 \cdot 20) \cdot 1^2 = -3.5 \, {\rm M}_{\rm S}^2$$

при значении $\cos \circ t = -1$ понижение подошвы волны от расчетного уровня

$$\eta_{\rm H} = -3.0 (-1) - \frac{0.105 \cdot 3.0^3}{2} \operatorname{cth} (0.105 \cdot 20) \cdot (-1)^2 = 2.5 \, \mathrm{M}.$$

4. В соответствии с п. 3 приложения 1 к СНиП II-57-75 находим, что рассчитываемое сооружение расположено в мелководной зоне, так как $H = 20,0 \text{ м} < 0.5\lambda = 0.5 \cdot 60 = 30,0 \text{ м}$. Поэтому ординаты эпюр волнового давления на сооружение вертикального профиля вычисляем в соответствии с п. 2.4.

Та	блица	116

ль точек	Заглубление точек z, м		Значение коэф ² фициентов k ₂ -k ₅ , k ₈ , k ₉		Значения волнового давления р, тс/м ²			
При гребне								
1	η _r	—3, 5	-	-	<i>p</i> 1	0		
2	0	0	k_2	0,72	$p_2 = k_2 \gamma h$	$p_2 = 2,15$		
3	0,25 <i>H</i>	5,0	k ₃	0,43	$p_3 = k_3 \gamma h$	$p_3 = 1,3$		
4	0,5 <i>H</i>	10,0	k.	0,27	$p_4 = k_4 \gamma h$	$p_4 = 0.8$		
5	H	20,0	k ₃	0,17	$p_5 = k_5 \gamma h$	$p_5 = 0.5$		
При ложбине								
6	0	0	-		<i>p</i> ₆	0		
7	η _π	2,5	_		$p_7 = -\gamma \eta_{\Pi}$	$p_{1} = -2,5$		
8	0,5 <i>H</i>	10,0	k ₈	0,48	$p_8 = -k_8 \gamma h$	$p_8 = -1,45$		
9		20,0	k9	0,36	$p_9 = -k_9 \gamma h$	$p_9 = -1,1$		

Таблица 117

•	№ точек	Заглубление расчетных точек <i>г</i> , м	Ординаты эпю- ры горизон- тального вол- нового давле- ния на верти- кальную стену р. тс/м ² , из табл. 116	α	słna	Ординаты эпюры гори- зонтального воянового дав- ления на на- клонную стену $P_{X\alpha}$, тс/м ²	COS a	Ординаты эпюры вер- тикального волнового давления на наклон- ную стену $P_{Z\alpha}$, тс/м ³
	При гребне							
	1 2 3 <i>А</i> в <i>А</i> н 5	$\begin{array}{c} & -3,5 \\ 0 \\ 0,25H \\ \\ 0,5H \\ 0,5H \\ H \end{array} \begin{array}{c} -3,5 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0 \end{array}$	0 2,15 1,3 1,2* 0,8 0,5	75 75 75 75 45 45 45	0,966 0,966 0,966 0,966 0,707 0,707 0,707	0 2,1 1,25 1,15 0,85 0,6 0,35	0,259 0,259 0,259 0,259 0,707 0,707 0,707	0 0,55 0,35 0,3 0,85 0,55 0,35
	При ложбине							
	6 7. А _в А _н 8 9	$\begin{vmatrix} 0 & 0 \\ \eta_{\rm ff} & 2,5 \\ - & 6,0 \\ 0,5/1 & 10,0 \\ H & 20,0 \end{vmatrix}$	$ \begin{array}{c c} 0 \\ -2,5 \\ -2,0^* \\ -1,45 \\ -1,1 \end{array} $	75 75 75 45 45 45	0,966 0,966 0,707 0,707 0,707	$ \begin{array}{c c} 0 \\ -2,4 \\ -1,9 \\ -1,4 \\ -1,0 \\ -0,8 \end{array} $	0,259 0,259 0,259 0,707 0,707 0,707	0 0,65 0,5 1,4 1,0 0,8
	* горизо ближа подход	Примечан энтального во йших расчет декстене гр	и е. Значени олнового давл ных ординат ребня— и <i>р</i> 7—	я волново іения путе волновоі -p ₈ при по	ого давлеі ем линейн го давлен одходе к (ния <i>р_А</i> опред ой интерноля иия (в нашем стене ложбин	целяются щии знач случае— ы стояче	по эпюре ений двух <i>р</i> ₃ — <i>р</i> 4 при й волны).

Расчет ведем в табличной форме (табл. 116). Значения коэффициентов k_2 — k_5 и k_8 , k_9 определяем по графикам, приведенным на рис. 3, 4 и 5, при $\frac{h}{\lambda} = 3,0:60 = 0,05$ и $\frac{\overline{\lambda}}{H} = 60:20 = 3,0.$

По далным табл. 116 строим эпюры горизонтального волнового давления, действующего на сооружение вертикального профиля (рис. 138).

5. По приближенным формулам 204 и 205 определяем ординаты эпюр горизонтального и вертикального волнового давления на крутонаклонную переднюю грань сооружения (табл. 117).

Расчетные эпюры давления приведены на рис. 138 и 139.

Дополнение 2

ДИНАМИЧЕСКИЙ РАСЧЕТ ВЕРТИКАЛЬНОЙ СТЕНЫ ПРИ ДЕЙСТВИИ РАЗБИВАЮЩИХСЯ ВОЛН

Ниже излагается метод расчета в соответствии с указаниями, приведенными в п. 2.13 СНиП II-57-75.

I. Определение нагрузок

1. Изменение во времени волновых нагрузок при ударе волны о стенку имеет вид, показанный на рис. 140.

Величиной импульса давлений p_{im} является площадь треугольника, заштрихованная на рис. 140. Величиной давления навала $p_{\rm H}$ является максимальная ордината эпюры навала.

Возвышение вершины волны над спокойным уровнем в момент удара принимается равным

$$z' = -(0.55H_{\rm B} + 0.1h).$$
 206

 Эпюра импульса давлений имеет вид, показанный на рис. 141. Величина импульса p_{im} на единицу длины стенки определяется по формуле

$$p_{im} = \frac{6.3a'c}{\pi^2 g} = 0,065a'c, \text{ tc} \cdot c/M^2, \qquad 207$$

где а' определяется по формуле

$$\frac{a'}{h} = 1,6 \text{ th}\left(\frac{2h}{H_{\rm B}} - 1,34\right) \sin \frac{8\pi h}{\overline{\lambda}} < 1,1,$$
 208

с — скорость волны перед ударом, определяемая по формуле

$$c = 1.2 \sqrt{gH_{\rm B}}.$$

3. Равнодействующая величин импульса давлений определяется по формуле

$$R_{im} = p_{im} k_{\rm H}' \left(H_{\rm c} - \frac{1}{2} z' \right), \ \tau c \cdot c/{\rm M}, \qquad 210$$

где k_н' — осредненный коэффициент пространственной неравномерности, определяемый по формуле

$$k_{\rm H}' = \frac{k_{\rm H}a' + 1.3k_{\rm H}(H_{\rm c} - z' - a')}{H_{\rm c} - z'},$$

где $k_{\rm H} = 0.55 + 0.15$ th $\frac{n}{l_{\rm c}}$; $l_{\rm c} -$ длина омоноличенной секции сооружения.

Точка приложения *R_{im}* находится на расстоянии от подошвы стенки

$$r_{im} = \frac{H_{\rm c}^2 - z'H_{\rm c} + \frac{z'^2}{3}}{2H_{\rm c} - z'} \cdot 212$$

Полное время действия R_{im} , обозначаемое τ_n , а также время ее нарастания $\tau_{\rm H}$ — определяются по графикам, приведенным

Рис. 142. Графики для определения тл и тн.

на рис. 142; на этих графиках т — период расчетной волны.

4. Эпюра давления навала строится по трем точкам (рис. 143):

при
$$z = z_{rp} = -0.75 H_{\rm B}$$

при $z = 0$
при $z = H_{\rm c}$

 $\left. \begin{array}{l} p_{\rm H} = 0; \\ p_{\rm H0} = 0.65 \gamma H_{\rm B}; \\ p_{\rm H\Pi} = 0.50 \gamma H_{\rm B}. \end{array} \right\}$

Рис. 143. Энюры бокового и взвешивающего давлений навала.

Рис. 144. Эквивалентная эпюра давления.

По эпюре определяется величина равнодействующей R_и и точка ее приложения.

5. Для проверки устойчивости верхней части сооружения на сдвиг (по швам массивовой кладки или надстройки над массивом-гигантом) строится эквивалентная эпюра пикового давления для статического расчета. Эта элюра строится по четырем точкам (рис. 144). Общая формула для расчета эквивалентного давления имеет вид;

213

$$p_{i3} = m' \frac{p_{im}k_{\rm H}'}{\tau_{\rm cr}}, \qquad 214$$

- где *p_{im}* ордината эпюры импульсов (рис. 141) на соответствующей отметке. Значения коэффициентов для соответствующих точек определяются следующим образом:

 $m'_1 = 0$ на вершине волны (z = z'); $m_{2'} = 5,0$ на расстоянии a'/2 от вершины волны; $m_{3'} = 3,0$ на расстоянии a' от вершины волны, $m_{4'} = 1,5$ под берменными массивами у подошвы стенки.

Период собственных колебаний стенки тст = т2 определяется по указаниям пп. 8 и 9.

6. Равнодействующая взвешивающего давления в подводных швах массивовой кладки определяется по формуле

$$P_{z \amalg 9} = 0.6 \frac{p_{\amalg 9} a_{\amalg}}{2}, \qquad 215$$

где р_{шэ} — ордината эпюры эквивалентного «пикового» давления на уровие рассматриваемого шва; аш — шприна сооружения по шву.

Равнодействующая взвешивающего давления 7. на подошву (рис. 143) определяется только для навала волны

$$P_{zH} = \frac{P_{HII}a}{2}; \qquad 216$$

ее момент относительно центра подошвы сооружения

$$M_{zH} = P_{zH} \frac{a}{6}.$$
 217

2. Методика динамического расчета устойчивости оградительных сооружений типа вертикальной стенки при ударном воздействии волн

8. Горизонтально-вращательные колебания стенки под волновым воздействием рассматриваются в главных формах, т. е. как вращатель-

Рис. 145. Положение главных центров колебаний О₁ и О₂.

ные колебания вокруг главных центров О1 и О2 (рис. 145), лежащих на одной вертикали с центром тяжести стенки на расстояниях r₁ (выше центра тяжести) и r₂ (ниже центра тяжести).

Эти расстояния определяются по формуле

$$h_{1,2} = \frac{h_0 \lambda_x^2}{\lambda_x^2 - \lambda_{1,2}^2},$$
 218

где $\lambda_x = \frac{2\pi}{\tau_x}$ — угловая частота горизонтальных колебаний стенки:

 $\lambda_{1,2} = \frac{2\pi}{\tau_{1,2}}$ – угловые частоты вращательных колебаний стенки вокруг главных центров колебаний;

$$\lambda_{\mathbf{f},2}^{\mathbf{a}} = \frac{1}{2\gamma_{2}} \left(\lambda_{x^{2}} + \lambda_{\varphi}^{\mathbf{a}} \right) \pm \sqrt{\left(\lambda_{x^{2}}^{2} + \lambda_{\varphi}^{\mathbf{a}} \right)^{2} - 4\gamma_{2}^{2}\lambda_{x}^{2}\lambda_{\varphi}^{\mathbf{a}}}; \qquad 219$$

 $\gamma_2 = \frac{\theta}{\theta_0}$; θ — момент инерции массы сооружения относительно оси, проходящей

через центр тяжести перпендикулярно плоскости чертежа; θ₀ = θ + mh₀² - момент инерции массы сооружения относительно оси,... проходящей через центр подошвы перпендикулярно плоскости чертежа; *m* — масса сооружения;

- ho-paccтояние (по вертикали) от центра тяжести до подошвы сооружения:
- λ_ω угловая настота собственных вращательных колебаний стенки относительно оси, проходящей через центр подошвы сооружения;

$$\lambda_{\varphi}^{2} = \frac{C_{\varphi}I}{\theta_{0}}, \qquad \lambda_{x}^{2} = \frac{C_{x}F}{m}, \qquad 220$$

где 1 -- момент инерции площади подошвы сооружения, а другие обозначения поясняются ниже.

Знак плюс перед корнем в формуле 219 соответствует значению λ_1^2 .

При построении эквивалентных эпюр в расчет принимается наибольший период τ_2 соответствующий наименьшей частоте λ_2 , получаемой при знаке (-) перед корнем в формуле 219.

9. Период собственных колебаний оградительных сооружений типа вертикальной стенки зависит от жесткости основания, которая характеризуется величиной коэффициентов постели, и от инерции массы сооружения.

Значения коэффициентов постели определяются по формуле

$$C_{x} = 0.7C_{z};$$

$$C_{z} = C_{0} \left[1 + 2 \frac{(a+l_{c})}{F} \right] \sqrt{\frac{Q_{B}}{2a}};$$

$$C_{\varphi} = C_{0} \left[1 + 2 \frac{(a+3l_{c})}{F} \right] \sqrt{\frac{Q_{B}}{2a}}.$$

$$221$$

- где C₀ основной коэффициент постели, определяемый по данным натурных исследований сооружений или -- приближенно -- по данным табл. 118 в зависимости от толщины каменной постели d, ширины стенки по подошве a и грунтов основания;
- $F = a l_c$ площадь подошвы монолитной секции сооружения между температурно-осадочными швами;
 - Q_в вес 1 м длины сооружения с учетом гидростатического взвешивания;
 - C_x коэффициент постели при чистом сдвиге сооружения; C_z коэффициент постели при равномерном сжатии основания;
 - С_w -- коэффициент постели при неравномерном сжатии основания.

Таблица 118

Краткая характеристика основания	С ₀ , тс/м ³
Каменная постель малой толщины ($d/a < 0.25 \div 0.30$) и песчаная подушка на илистых грун- тах или постель малой толщины на заилен- ных песках. Каменная постель малой толщины на песках, глинах средней плотности или каменная по- стель средней толщины ($d/a = 0.31 \div 0.40$) на слабых грунтах.	125 —15 0 200—300
Каменная постель средней толщины на грунтах средней плотности. Мощная каменная постель (d/a > 0,45) на грун-	250 000 250—400
тах средней плотности Плотные осадочные породы, гравий, галька, песок плотный и мощная каменная постель Бетон в мешках или кладка массивов для вы-	400—600 600—800
равнивания основания	$\frac{1100-1300}{3000-5000}$

Если с портовой стороны сооружения имеется подсыпка камня выше подошвы стенки, необходимо учитывать влияние ее отпора на положение главных центров. Для этого величину C_x увеличивают на $\Delta C_x =$ =250 тс/м³ на 1 м приведенной высоты подсыпки выше подошвы сооружения. Под приведенной высотой подразумевается толщина слоя подсыпки с учетом пригрузки берменным массивом.
10. Общая последовательность расчетов по определению наибольших отклонений стенки от положения равновесия под волновым воздействием такова:

по формулам 220, 219 и 218 находятся положения главных осей. проходящих через центры O_1 и O_2 перпендикулярно плоскости чертежа;

определяются моменты равнодействующей импульса давлений M^{I}_{im} и M^{II}_{im} относительно осей O_1 и O_2 соответственно;

по величинам τ_n и $\tau_{\rm H}$, а также $\tau_1 = \frac{2\pi}{\lambda_1}$ и $\tau_2 = \frac{2\pi}{\lambda_2}$, пользуясь графиком, приведенным на рис. 146, определяем величину динамических коэффициентов k_{n}^{I} и k_{n}^{II} ;

Рис. 146, Графики для определения динамических коэффициентов k_{∂}^{1} и k_{∂}^{11} .

по формулам

$$\alpha = \frac{2k_{\rm A}^I M_{Im}^I}{\theta_1 \lambda_1^2 \tau_n} \quad \text{is } \beta = \frac{2k_{\rm A}^{II} M_{Im}^{II}}{\theta_2 \lambda_2^2 \tau_n} \qquad 222$$

находим углы поворота вокруг O_1 и O_2 (в формулах 222 $\theta_1 = \theta + mr_1^2$ н $\theta_2 = \theta + mr_2^2$ — моменты имерции стены относительно главных осей O_1 и O_2 соответственно).

Наибольшее отклонение подошвы стены от положения равновесия

$$\delta = \beta (r_2 - h_0) - \alpha (r_1 + h_0);$$
 223

касательные напряжения при этом и их равнодействующая по подошве соответственно равны:

$$\tau_{\rm CAB} = C_x \delta; \qquad R_{\rm A} = C_x \delta a. \qquad 224$$

11. Коэффициент устойчивости стены на сдвиг определяется по формуле

$$k_{\rm CAB} = \frac{(Q_{\rm B} - nP_{\rm ZH}) k_{\rm Tp}}{R_{\rm A} + nR_{\rm H}},$$
 225

где Q_в — то же, что в формуле 221; *k*_{тр} — коэффициент трения материала сооружения по постели; $n = \frac{t_1}{\tau_n} < 1,0$. где t_1 определяется по графикам, приведенным на рис. 147. Напряжения у граней подошвы определяются по формуле

$$\sigma_{1,2} = \frac{(Q_{\rm B} - nP_{\rm ZH})}{a} \pm \left[(\beta + \alpha) \frac{a}{2} C_{\varphi} + \frac{n\Sigma M}{W} \right], \qquad 226$$

где ΣМ — суммарный опрокидывающий момент относительно оси, проходящей через центр подошвы стенки перпендикулярно плоскости чертежа, от давления навала, взвешивающего давления и собственного веса стенки;

 $W = a^2/6$ — момент сопротивления площади подошвы стенки на 1 м ее длины.

Рис. 147. График для определения значений t₁.

Пример 72. Произвести динамический расчет устойчивости сооружения, подвергающегося воздействию разбивающихся волн при нижеуказанных исходных данных.

Глубины: на подходах к сооружению H = 12,0 м, у стены $H_c = 7,0$ м, над бермой $H_b = 5,7$ м.

Элементы волн: высота h=5,0 м, средняя длина $\overline{\lambda}=75,0$ м, период $\tau=7,8$ с. При заданных элементах волны разбиваются нопосредственно у степы, так как

$$\frac{H}{h} = \frac{12.0}{5.0} = 2.4 > 1.5$$
, a $\frac{H_{\rm B}}{h} = \frac{5.7}{5.0} = 1.14 < 1.25$.

Поперечное сечение рассчитываемого сооружения, подобранное на основании статического расчета, показано на рис. 148. Длина секции с монолитной надстройкой $l_c = 15,0$ м. Вес и масса 1 м длины сооружения без учета гидростатического взвешивания соответственно равны: Q = 206 тс, $m = \frac{Q}{g} = 20,9$ тс \cdot с²/м. Возвышение центра тяжести сооружения над его подошвой $h_0 = 5,15$ м. Момент инерции массы.1 м длины сооружения относительно оси, проходящей через центр тяжести перпендикулярно плоскости чертежа, $\theta = 308,6$ тс $\cdot m \cdot c^2$. Вес 1 м длины сооружения с учетом гидростатического взвешивания $Q_B = 206 - 7 \cdot 8 = 150$ тс.

Решение.

1. По формуле 206 возвышение вершины разбивающейся волны над спокойным уровнем

$$z' = -(0.55 \cdot 5.7 + 0.1 \cdot 5.0) = -3.65$$
 M.

По формуле 208 $\frac{a'}{h} = 1,6 \text{ th} \left(\frac{2,5}{5,7} - 1,34\right) \sin \frac{8\pi \cdot 5}{75} = 1,6 \cdot 0,39 \cdot 0,99 = 0,62, \text{ откуда } a' = 0,62 \cdot 5,0 = 3,1 \text{ м.}$ 2. По формуле 209 скорость волны перед ударом $c = 1,2 \sqrt{-9,81 \cdot 5,7} = 9,0 \text{ м/с.}$

Рис. 148. Эпюры давления разбивающихся воли на вертикальную стену Условные обозначения: пунктир (- - -)-эпюра импульса давлений в тс. с/м²; сплошная линия (---)эпюры бокового и взвешивающего давлений навала в тс/м²; осевой пунктир (----)-эквивалентная гэпюра в тс/м² для статического расчета на сдвиг по швам.

По формуле 207 значение импульса давлений на 1 м длины стенки $p_{im} = 0.065 \cdot 3.1 \cdot 9.0 = 1.8 \text{ тс} \cdot \text{с/M}^2.$

По формуле 211 при $l_c = 15$ м и $k_{\rm H} = 0,55 + 0,15$ th $\frac{5}{15} = 0,598 \approx 0,60$ осредненный коэффициент пространственной неравномерности

$$k_{\rm H}' = \frac{0.6 \cdot 3.1 + 1.3 \cdot 0.6 (7.0 + 3.65 - 3.1)}{7.0 + 3.65} = 0.73$$

Тогда, по формуле 210 равнодействующая импульса давлений

$$R_{im} = 1.8 \cdot 0.73 \left(7.0 + \frac{3.65}{2} \right) = 11.5 \text{ tc} \cdot \text{c/m},$$

216

а ее плечо (по формуле 212)

$$r_{im} = \frac{7^2 + 3,65 \cdot 7 + \frac{3,65^2}{3}}{2 \cdot 7 + 3,65} = 4,45 \text{ M}.$$

По графикам, приведенным на рис. 142, при $\frac{H_{\rm B}}{a_1} = \frac{5.7}{3.1} = 1.85$ находим полное время действия R_{im} $\tau_n = 0.10 \cdot \tau = 0.1 \cdot 7.8 = 0.78$ с, а время ее нарастания $\tau_{\rm H} = 0.5 \tau_n = 0.39$ с.

3. Пользуясь формулами 213, вычислим ординаты и построим эпюру давлений навала волны на рис. 148:

на уровне $z_{\rm rp} = -0.75 \cdot 5.7 = -4.3$ м $p_{\rm HF} = 0$,

на уровне спокойной поверхности (z=0)

 $p_{\rm HO} = 0,65 \cdot 1,02 \cdot 5,7 = 3,8 \text{ tc/m}^2,$

на уровне подошвы стенки $(z = H_c)$

$$p_{\rm HII} = 0,50 \cdot 1,02 \cdot 5,7 = 2,9 \text{ tc/m}^2.$$

Равнодействующая давлений навала

$$R_{\rm H} = 0.5 \cdot 4.3 \cdot 3.8 + (3.8 + 2.9) \cdot 7.0 = 31.7 \text{ tc/m}.$$

Опрокидывающий момент силы навала относительно подошвы стенки

$$M_{\rm H} = 0.5 \cdot 4.3 \cdot 3.8 \left(\frac{4.3}{3} + 7.0\right) + \frac{3.8 + 2.9}{2} \cdot 7.0 \cdot \frac{7.0}{3} \cdot \frac{2 \cdot 3.8 + 2.9}{3.8 + 2.9} = 155 \text{ tc} \cdot \text{M/M}.$$

Плечо $r_{\rm H} = \frac{M_{\rm H}}{R_{\rm H}} = \frac{155,0}{31,7} = 4,90$ м.

По формуле 216 взвешивающее давление от навала

$$P_{zH} = \frac{2.9 \cdot 8.0}{2} = 11.6 \text{ tc/m}.$$

Момент от взвешивающего давления навала относительно центра подошвы стенки (по формуле 217)

$$M_{zH} = \frac{11,6\cdot 8}{6} = 15,4 \text{ tc} \cdot \text{m/m}.$$

4. По табл. 118 для мощной каменной постели $\left(\frac{d}{a} = \frac{5,0}{8,0} = 0,625 > 0,45\right)$ и по формулам 221 упругие характеристики основания соответственно равны:

$$C_{0} = 500 \text{ TC/M}^{3};$$

$$C_{z} = 500 \left(1 + 2 \frac{8 + 15}{8 \cdot 15}\right) \sqrt{\frac{150}{2 \cdot 8}} = 500 \left(1 + 0.385\right) 3.06 = 2100 \text{ TC/M}^{3};$$

$$C_{x} = 0.7 \cdot 2100 = 1470 \text{ TC/M}^{3};$$

$$C_{\varphi} = 500 \left(1 + 2 \frac{8 + 3 \cdot 15}{8 \cdot 15}\right) \sqrt{\frac{150}{2 \cdot 8}} = 500 \left(1 + 0.88\right) 3.06 = 2860 \text{ TC/M}^{3}.$$

5. По формулам 220, 219 и 218 определим частоты собственных колебаний сооружения и положение главных центров колебаний O_1 и O_2 (рис. 145):

$$\theta_{0} = 308.6 \pm 20.9 \cdot 5.15^{2} = 856.6 \text{ tc} \cdot \text{M} \cdot \text{c}^{2};$$

$$I = \frac{1 \cdot 8^{3}}{12} = 43 \text{ M}^{4}; \qquad \lambda_{\varphi}^{2} = \frac{2860 \cdot 43}{856.6} = 145 \text{ 1/c}^{2};$$

$$\lambda_{x}^{2} = \frac{1470 \cdot 8}{20.9} = 565 \text{ 1/c}^{2}; \qquad \gamma_{2} = \frac{308.6}{856.6} = 0.36;$$

$$\lambda_{1,2}^{2} = \frac{1}{2 \cdot 0.36} \left[(565 \pm 145) \pm \sqrt{(565 \pm 145)^{2} - 4 \cdot 0.36 \cdot 565 \cdot 145} \right] = -1.39 (710 \pm 620); \qquad \lambda_{1}^{2} = 1.39 \cdot 1330 = 1850 \text{ 1/c}^{2}, \quad \text{откуда}$$

217

$$λ_1 = 43 \ 1/c; \quad λ_2^2 = 1,39 \cdot 90 = 125 \ 1/c^2, \quad \text{откуда}$$

$$λ_2 = 11,2 \ 1/c; \quad τ_1 = \frac{2\pi}{\lambda_1} = \frac{6,28}{43,0} = 0,145 \ c;$$

$$τ_2 = τ_{cT} = \frac{2\pi}{\lambda_2} = \frac{6,28}{11,2} = 0,56 \ c;$$

$$r_1 = \frac{h_0 \lambda_x^2}{\lambda_x^2 - \lambda_1^2} = \frac{5,15 \cdot 565}{565 - 1850} = -2,27 \ \text{m};$$

$$r_2 = \frac{h_0 \lambda_x^2}{\lambda_x^2 - \lambda_2^2} = \frac{5,15 \cdot 565}{565 - 125} = 6,60 \ \text{m}.$$

(Для проверки: должно быть $|r_1 r_2| = \frac{\theta}{m} = \frac{308.6}{20.9} = 14,75 \text{ м}^2$; получили $|r_1 r_2| = 2,27 \cdot 6,60 = 14,98 \text{ м}^2 \approx 14,75 \text{ м}^2$).

 $|r_1 r_2| = 2,27 \cdot 6,60 = 14,98 \text{ м}^2 \approx 14,75 \text{ м}^2$). 6. Моменты равнодействующей импульса давления относительно O_1 и O_2 соответственно равны (рис. 145 и 148):

$$M_{im}^{I} = -11,5 (2,27 + 5,15 - 4,45) = -34,2$$
 TC;
 $M_{im}^{II} = 11,5 (6,60 - 5,15 + 4,45) = 68,0$ TC.

7. По значениям $\tau_{\rm H}$, τ_{a} , τ_{1} и τ_{2} (пп. 2 и 5) определяем по графикам, приведенным на рис. 146, значения динамических коэффициентов для O_1 и O_2 . При $\frac{\tau_{\rm H}}{\tau_{\rm R}} = 0,50$ и $\frac{\tau_{\rm R}}{\tau_{\rm I}} = \frac{0,78}{0,145} = 5,45 > 2,0$ получаем $k'_{\rm A} = 1,0$; при $\frac{\tau_{\rm H}}{\tau_{\rm R}} = 0,50$ и $\frac{\tau_{\rm R}}{\tau_{\rm 2}} = \frac{0,78}{0,56} = 1,39$ получаем $k''_{\rm A} = 1,35$.

8. По формулам 222 находим моменты инерции стены относительно O_1 и O_2 и углы ее поворота вокруг главных центров от удара волны

$$\begin{aligned} \theta_1 &= 308,6 + 20,9 \cdot 2,27^2 = 416,6 \text{ tc} \cdot \text{m} \cdot \text{c}^2; \\ \theta_2 &= 308,6 + 20,9 \cdot 6,60^2 = 1218,6 \text{ tc} \cdot \text{m} \cdot \text{c}^2; \\ \alpha &= \frac{2 \cdot 1 \cdot (-34,2)}{416,6 \cdot 1850 \cdot 0,78} = -0,000113 \text{ par}; \\ \beta &= \frac{2 \cdot 1,35 \cdot 68,0}{1218,6 \cdot 125 \cdot 0,78} = 0,00155 \text{ par}. \end{aligned}$$

9. По формуле 223 наибольшее отклонение подошвы стены от положения равновесия

 $\delta = 0,00155(6,6-5,15) + 0,000113(5,15+2,09) = 0,00224 + 0,00079 = 0,00303 м.$ Соответствующие касательные напряжения и их равнодействующая —

Соответствующие касательные напряжения и их равподеиствующая по формуле 224 — равны:

$$\tau_{cdb} = 1470 \cdot 0.00303 = 4.45 \text{ tc/m}^2;$$

 $R_d = 4.45 \cdot 8 = 35.6 \text{ tc/m}.$

10. По величине $\frac{\tau_n}{\tau_2} = \frac{0.78}{0.56} = 1,39$ и $\frac{\tau_n}{\tau_n} = 0,5$ получаем по графику, приведенному на рис. 147, $\frac{t_1}{\tau_2} = 0.80$, откуда $t_1 = 0.80\tau_2 = 0.80\cdot0.56 = 0.448$ с. Отсюда $n = \frac{t_1}{\tau_n} = \frac{0.448}{0.78} = 0.570$.

11. По формуле 225 коэффициент устойчивости стенки на сдвиг $k_{cAB} = \frac{(150-0.57\cdot11.6)\cdot0.6}{35.6+0.57\cdot31.7} = 1,60.$

12. По формуле 226 краевые напряжения у граней подошвы стены при угле ее поворота $\varphi = \beta + \alpha = 0,00155 - 0,00011 = 0,00144$ рад. и моменте сопротивления 1 м длины подошвы $W = \frac{1 \cdot 8^2}{6} = 10,65$ м³ равны

$$\sigma_{1,2} = \frac{150 - 0.57 \cdot 11.6}{8} \pm \left[0.00144 \frac{8}{2} 2860 + \frac{0.57 (31.7 \cdot 4.93 + 15.4)}{10.65} \right] = 17.8 \pm (16.5 + 9.2);$$

$$\sigma_{1} = 17.8 + 25.7 = 43.5 \text{ T/M}^{2} = 4.35 \text{ Krc/cm}^{2};$$

$$\sigma_{2} = 17.8 - 25.7 = -8.1 \text{ T/M}^{2} = -0.81 \text{ Krc/cm}^{2};$$

раскрытие шва вдоль подошвы происходит на протяжении 1,25 м.

(Здесь — при определении напряжений — принято, что собственный вес сооружения приложен в середине его подошвы, ввиду малости эксцентриситета).

Заметим, что при статическом расчете этого же сооружения в рассматриваемых условиях получено: $k_{cgB} = 1,38$, $\sigma_1 = 5,09$ кгс/см²; $\sigma_2 = -1,65$ кгс/см², а раскрытие шва вдоль подошвы ≈ 2 м.

Таким образом, использование динамического расчета позволило выявить некоторые резервы устойчивости сооружения по сравнению с результатами статического расчета.

13. Наиболее опасным при статическом расчете сооружения на сдвиг является первый подводный шов на отметке — 1,0 м. Вес части стенки, расположенной выше этого шва, составляет $Q_{\rm m}$ = 85,3 тс/м с учетом статического взвешивания.

Приведем расчет по эквивалентной эпюре (рис. 148).

На расстоянии a'/2 = 1,55 м от вершины волны $p_{2im} = 0,8$ тс · с/м², а на расстоянии a' = 3,1 м $p_{3im} = 1,6$ тс · с/м²; ниже расчетного уровня воды, в том числе у подошвы $p_{4im} = 1,8$ тс · с/м². Соответствующие ординаты эквивалентной эпюры по формуле 214 при $k'_{\rm H} = 0,73$ (п. 2 расчета) равны:

$$P_{23} = \frac{5.0 \cdot 0.8 \cdot 0.73}{0.56} = 5.2 \text{ Tc/M}^2;$$

$$P_{33} = \frac{3 \cdot 1.6 \cdot 0.73}{0.56} = 6.24 \text{ Tc/M}^2;$$

$$P_{43} = \frac{1.5 \cdot 1.8 \cdot 0.73}{0.56} = 3.52 \text{ Tc/M}^2.$$

На уровне первого подводного шва ордината давления по эквивалентной эпюре *р*_{шэ}=5,6 тс/м², а равнодействующая эквивалентного давления на выщерасположенную часть стенки

$$R_{\rm W3} = \frac{5,2 \cdot 1,55}{2} + \frac{5,2 + 6,24}{2} \, 1,55 + \frac{6,24 + 5,6}{2} \, 1,55 = 22,05 \, \, {\rm tc/m}.$$

Равнодействующая взвешивающего давления по этому шву соответственно формуле 215

$$P_{z=10} = 0.6 \frac{5.6 \cdot 8}{2} = 13.5 \text{ tc/m}.$$

Коэффициент устойчивости на сдвиг по шву

$$k_{\rm CAB} = \frac{0.5 \, (85,3 - 13,5)}{22,05} = 1,63,$$

где k_{тр}=0,5 — коэффициент треиня бетона по бетону.

Дополнение 3

ОПРЕДЕЛЕНИЕ ВОЛНОВЫХ НАГРУЗОК НА СКВОЗНЫЕ СООРУЖЕНИЯ НА ОСНОВЕ ДАННЫХ НАТУРНЫХ НАБЛЮДЕНИЙ

В соответствии с п. 3.17 СНиП II-57-75 в прибойной зоне при $\frac{h}{H} \leq 0,8$

допускается определять нагрузки от воли на сквозные сооружения по методам, основанным на данных натурных наблюдений. Ниже приводится метод такого расчета, который распространяется на сквозные сооружения при диаметрах его элементов $d \leq 1$ м и при $H \leq H_{\rm Kp}$.

1. Величину волновой нагрузки на вертикальную преграду полной высоты Q, тс, при любом положении ее относительно профиля волны следует определять по формуле

$$Q = Q_{\rm H} \delta'_{X\rm H} + Q_{\rm c} \delta_{X\rm c}, \qquad 227$$

где Q_n и Q_c — соответственно инерционный и скоростной компоненты нагрузки от воли, тс, определяемые при $\overline{x} = 0.25$ по формулам:

Рис. 149. Графики значений коэффициентов сочетания инерционного δ'_{xu} (график 1), δ'_{zu} (график 3) и скоростного δ_{xc} (график 2), δ'_{zc} (график 4) компонентов горизонтальной и вертикальной нагрузки от волн.

$$Q_{\mu} = \frac{1}{4} \gamma \alpha_{\mu}' C_{\mu} \pi d^2 h, \qquad 228$$

$$Q_{\rm c} = \frac{1}{2} \gamma a_{\rm c}' C_x dh^2, \qquad 229$$

где δ'_{xH} и δ'_{xC} — коэффициенты сочетания инерционного и скоростного компонентов нагрузки от волн, принимаемые соответственно по графикам 1 и 2, приведенным на рис. 149, в зависимости от значения относительного удаления преграды от гребня волны $\bar{x} = \frac{2\pi^2 x}{\pi^2};$

 $\gamma -$ объемный вес воды, тс/м³; a_{H}' и $a_{c}' -$ инерционный и скоростной коэффициенты глубины, принимаемые соответственно по графикам 1 и 2, приведенным на рис. 150; в зависимости от относительной глубины $\frac{\pi^2 H}{g\tau^2}$ и относительной крутизны волны $\frac{\pi^2 h}{g\tau^2}$;

h — высота волны заданной обеспеченности, м, в створе сооружения. Коэффициенты сопротивлений следует принимать:

— инерционного $C_n = 2$; — скоростного для гладких преград $C_x = \frac{2}{3}$; для шероховатых — среднее значение $C_x = 1,0$.

Рис. 150. Графики значений инерционного ан' (график 1) и скоростного ас' (график 2) коэффициентов глубины.

2. Максимальную нагрузку от волн $Q_{\rm M}$, тс, на вертикальную обтекаемую преграду следует определять из ряда величин, получаемых по формуле 227 при различных значениях x.

3. Горизонтальная составляющая удельной нагрузки от волн P_x , тс/м, на вертикальную и горизонтальную преграду, расположенную перпендикулярно лучу волны, определяется по формуле

$$P_x = P_{xH} \delta'_{xH} + P_{xc} \delta'_{xc}, \qquad 230$$

где P_{xH} и P_{xc} — инерционный и скоростной компоненты горизонтальной составляющей нагрузки от волн, тс/м, при $\overline{x} = 0,25$, определяемые по формулам:

$$P_{xu} \coloneqq \frac{1}{4} \gamma \pi d^2 C_{\mu} m_{\mu}; \qquad 231$$

$$P_{xc} = \frac{1}{2} \gamma dh C_x m_c; \qquad 232$$

б'_{хи} и б'_{хс} — коэффициенты сочетания инерционного и скоростного компонентов горизонтальной составляющей удельной нагрузки от воли определяются по графикам 1 и 2, приведенным на рис. 149; значения коэффициентов сопротивлений C_и и C_x принимаются согласно указаниям, приведенным выше в п. 1;

Рис. 151. Графики значений коэффициентов mc и mн.

 m_н и m_c — коэффициенты удельной нагрузки от волн, принимаемые по рис. 151
 в зависимости от относительной глубины π²H
 - σ=2, относительной крус относительной глубины $\frac{\pi r_{II}}{g \tau^2}$, относительной кру-и относительного заглубления центра объема тизны волн $\frac{\pi^2 h}{g\tau^2}$ $\bar{z} = \frac{z}{H_0 + \eta}$ рассматриваемого элемента единичной длины;

Но – глубина моря под подошвой волны (рис. 152), определяемая по формуле

$$H_0 = H + \eta_{\rm B} - h; \qquad 233$$

η --- возвышение профиля волны над уровнем ее подошвы в рассматриваемом створе определяется по формуле

$$\eta = \psi' h; \qquad 234$$

- мое по рис. 152;
- ¬в превышение вершины волны над расчетным уровнем, м, следует определять по п. 20 приложения 1;
- h высота волны заданной обеспеченности в створе сооружения по п. 20 приложения 1.

4. Вертикальная составляющая удельной нагрузки от волн Pz, тс/м, на горизонтальную преграду определяется по формуле

$$P_z = P_{zu}\delta_{zu} + P_{zc}\delta_{zc}, \qquad 235$$

где P_{zt} и P_{zc} — инерционный и скоростной компоненты вертикальной составляющей нагрузки от волн, тс/м, при $\overline{x} = 0.25$, определяемые по формулам:

$$P_{2H} = \frac{1}{4} \gamma \pi d^2 C_H n_H;$$
 236

$$P_{zc} = \frac{1}{2} \gamma dh C_x n_c; \qquad 237$$

 δ_{zu} и δ_{zc} — коэффициенты сочетания инерционного и скоростного компонентов вертикальной составляющей удельной нагрузки от волн определяются по графикам 3 и 4, приведенным на рис. 149;
 n_u и n_c — коэффициенты удельной нагрузки от воли, принимаемые по рис. 153,

 $n_{\rm H}$ и $n_{\rm C}$ — коэффициенты удельной нагрузки от воли, принимаемые по рис. 153, в зависимости от относительной глубины $\frac{\pi^2 H}{g\tau^2}$, относительной крутизны воли $\frac{\pi^2 h}{g\tau^2}$ и относительного заглубления центра объема

тизны волн $\frac{\pi^2 h}{g\tau^2}$ и относительного заглубления центра объема $\overline{z} = \frac{z}{H_0 + \eta}$ рассматриваемого элемента единичной длины. Значения

остальных символов соответствуют п. 3.

5. Равнодействующая удельной нагрузки от волн определяется по формуле

$$P = \sqrt{P_x^2 + P_z^2},$$
238

где P_x и P_z — величины, определяемые по формулам 230 и 235.

6. Ордината точки приложения волновой нагрузки на вертикальную преграду определяется как ордината центра тяжести площади эпюры удельной нагрузки от волн.

7. Горизонтальная составляющая удельной нагрузки от воли на элементы сквозного сооружения, не параллельные координатным осям X и Z, определяется как сумма скоростной и инерционной составляющих удельной волновой нагрузки на проекции этих элементов на соответствующие координатные плоскости, определяемые при соответствующих значениях x и z.

8. При определении волновых нагрузок необходимо учитывать обрастание элементов сквозного сооружения ниже расчетного уровня водорослями и ракушей. При этом поперечные размеры преграды должны увеличиваться на удвоенную толщину слоя обрастания. Последняя принимается по данным наблюдений или по литературным источникам.

Пример 73. Дано: сооружение I класса капитальности, глубина моря в створе сооружения H = 15 м, уклон дна 1: $m_{\alpha} = 0,01$, средний период волны $\tau = 10$ с, рефракция отсутствует, волнение установившееся.

Требуется определить максимальные волновые нагрузки и ординаты точки приложения равнодействующей для свай d=0.5 м и 1.0 м, построить эпюры горизонтальной составляющей удельной нагрузки от волн при максимальном значении $Q_{\rm M}$.

Решение.

Определение элементов волн. Высоту волны в прибойной зоне $h_{\rm np}$, м, определяем для заданного уклона дна $(1:m_{\alpha})$ по графикам 2, рис. 125(42) приложения 1; при этом по безразмерной величине $\frac{H}{\overline{\lambda_{rn}}}$ находим значение $\frac{h_{\rm np}}{g\tau^2}$, откуда определяем $h_{\rm np}$. Так как рассматриваемое сооружение является сооружением I класса капитальности, принимаем согласно табл. 89(35) расчетную обеспеченность высот волн 1%. Соответственно указанному здесь и заданным величинам имеем:

$$\bar{\lambda}_{\Gamma a} = \frac{g^{\overline{\tau}^2}}{2\pi} = \frac{981}{6,28} = 156,2 \text{ M}, \quad \frac{H}{\bar{\lambda}_{\Gamma a}} = \frac{15}{156,2} = 0,096,$$

тогда $\frac{h_{\text{пр}} 1\%}{g^{\frac{1}{\tau^2}}} = 0,0116$, откуда $h_{\text{пр}} 1\% = 0,0116 \cdot 981 = 11,38$ м.

Определение волновой нагрузки. Величину волновой нагрузки определяем по формулам 227—229:

$$Q_{\rm H} = 0.25 \cdot 1.0 \cdot 0.44 \cdot 2.0 \cdot 3.14 \cdot 11.38 \cdot d^2 = 7.86d^3, \text{ TC};$$
$$Q_{\rm C} = 0.5 \cdot 1.0 \cdot 0.34 \cdot 1.0 \cdot (11.38)^2 \cdot d = 22.016d, \text{ TC};$$

где соответственно графикам 1 и 2, приведенным на рис. 150, при $\frac{\pi^2 H}{g\tau^2} = \frac{9.85 \cdot 15}{981} = 0.15; \frac{\pi^2 h}{g\tau^2} = \frac{9.85 \cdot 11.38}{981} = 0.114; \ \alpha_{\text{H}}' = 0.44, \ \alpha_{\text{c}}' = 0.34.$

Рис. 153а. Графики значений коэффициентов n_и и n_c.

Далее, при $C_{\mu} = 2,0, C_{x} = 1,0$ (для шероховатых свай), $\gamma = 1,0$ тс/м³, $\tau = 10$ с, $x = 0,25, \delta'_{xn} = \delta'_{xc} = 1$ имеем: для сваи d = 0,5 м

$$Q_{\rm H} = 7,86 \cdot 0.25 = 1,965 \text{ tc.}, \qquad Q_{\rm c} = 22,016 \cdot 0.5 = 11,008 \text{ tc.},$$

 $Q = 1,965 + 11,008 = 12,97 \text{ tc;}$

для сваи d = 1,0 м

$$Q_{\rm H} = 7,86$$
 rc., $Q_{\rm c} = 22,020$ rc., $Q = 29,88$ rc.

Рис. 1536. Графики значений коэффициентов n_и и n_c.

15*

Значения Q_{u} , Q_{c} и Q при разных фазах волны сведены в табл. 119; при соответствующих вычислениях приняты значения δ'_{xu} и δ'_{xc} по графикам, приведенным на рис. 149.

Приведенные в табл. 119 данные показывают, что максимальная волновая нагрузка от волн Q_{μ} для сваи d = 0,5 м получается при $\overline{x} = 0$, а для сваи d = 1,0 м — при $\overline{x} = 0,15$.

							<i>I</i> a	олица 115
x	0	0,15	0,25	0,5	0,6	0,7	0,8	1,0
			Для	я сваи	d=0,3	5 м		
$Q_{\rm H}, {\rm TC} \ Q_{\rm C}, {\rm TC} \ Q, {\rm TC}$	$\begin{vmatrix} 0 \\ 15,41 \\ 15,41 \end{vmatrix}$	1,18 13,98 15,16	1,965 11,008 12,97	2,75 1,101 3,85	2,59 0 2,59	$2,26 \\ -1,21 \\ 1,05$	$1,63 \\ -3,08 \\ -1,45$	0 5,83 5,83
			Для	сваи	d = 1,0	М		
$\begin{array}{c} Q_{\rm H}, \ {\rm tc} \\ Q_{\rm c}, \ {\rm tc} \\ Q, \ {\rm tc} \\ \delta_{{\rm xH}}' \\ \delta_{{\rm xc}}' \end{array}$	0 30,82 30,82 0 1,4	4,72 27,96 32,68 0,6 1,27	7,86 22,02 29,88 1,0 1,0	$11,01 \\ 2,20 \\ 13,21 \\ 1,4 \\ 0,1$	$10,38 \\ 0 \\ 10,38 \\ 1,32 \\ 0 \\ 0$	$9,04 \\ -2,42 \\ 6,62 \\ 1,15 \\ -0,11$	$\begin{array}{r} 6,53 \\ -6,16 \\ -0,37 \\ 0,83 \\ -0,28 \end{array}$	0 - 11,67 - 11,67 0 - 0,53

Определение горизонтальной составляющей удельной нагрузки. Горизонтальную составляющую удельной нагрузки от волн определяем по формулам 230—232:

 $P_{xti} = 0.5 \cdot 1.0 \cdot 3.14 \cdot d^2 m_{ti} = 1.57 d^2 m_{ti}, \text{ tc/m}, P_{xc} = 0.5 \cdot 1.0 \cdot 11.38 \cdot 1.0 \cdot dm_c = 5.69 dm_c, \text{ tc/m}, Ta \delta Auga 120 3$

\overline{z}	1,0	0,8	0,6	0,4	0,2	0
$m_{\rm H}$	0,380	0,230	0,180	0,150	0,143	0,125
$m_{\rm C}$	0,370	0,190	0,150	0,130	0,110	0,100
	Дл	я сваи	d = 0,5	М		
$P_{xii}, ext{ tc/m} P_{xci}, ext{ tc/m} P_{xci}, ext{ tc/m} P_{x}, ext{ tc/m}$	0,149	0,090	0,070	0,059	0,056	0,049
	1,053	0,541	0,427	0,369	0,313	0,285
	1,202	0,631	0,497	0,428	0,369	0,334
	Дл	я сваи	d = 1,0	м		
$P_{xu}, tc/m$	0,597	0,361	0,283	0,235	0,224	0,196
$P_{xc}, tc/m$	2,105	1,082	0,852	0,738	0,626	0,570
$P_{x}, tc/m$	2,702	1,443	1,135	0,973	0,850	0,766

Значения коэффифиентов удельной нагрузки $m_{\rm H}$ и $m_{\rm c}$ определяем по графикам, приведенным на рис. 151, при $\frac{\pi^2 H}{g\tau^2} = 0,15$, $\frac{\pi^2 h}{g\tau^2} =$ = 0,114 и при $z = \frac{z}{H_0 + \eta} =$ = 1,0; 0,8; 0,6; 0,4; 0,2н 0. Найденные при этих значениях величины P_{xu} , P_{xc} , P_x при x =

=0,25 и $\delta'_{xu} = \delta'_{xc} = 1,0$, сведены в табл. 120.

$\vec{x} = 0$				$\bar{x} = 0.15$		$\bar{x} = 0.25$			
ź	^т н	m _c	P _x =P _{xc} TC/M	Р _{.XII} тс/м	Р _{хс} тс/м	Р х тс/м	Р тс/м	Р _{хс} тс/м	Р _х тс/м
	<u> </u>				·				Для
1,0 0,8 0,6 0,4 0,2 0	0,38 0,23 0,18 0,15 0,14 0,125	0,37 0,19 0,15 0,13 0,11 0,10	1,474 0,757 0,598 0,517 0,438 0,399	0,089 0,054 0,042 0,035 0,034 0,029	1,337 0,687 0,542 0,469 0,398 0,362	1,426 0,741 0,584 0,504 0,432 0,391	0,149 0,090 0,070 0,059 0,056 0,049	1,053 0,541 0,427 0,369 0,313 0,285	1,202 0,631 0,497 0,428 0,369 0,334
	0,120	0,10	, ,,,,,,,,	0,000	0,00				Для
1,0 0,8 0,6 0,4 0,2 0,0	0,38 0,23 0,18 0,15 0,14 0,125	0,37 0,19 0,15 0,13 0,11 0,10	2,947 1,513 1,196 1,036 0,876 0,797	0,358 0,217 0,17 0,142 0,135 0,118	2,673 1,373 1,085 0,94 0,795 0,723	3,031 1,59 1,255 1,082 0,93 0,841	0,597 0,361 0,283 0,236 0,225 0,196	2,105 1,081 0,854 0,74 0,626 0,569	2,702 1,442 1,137 0,976 0,851 0,765

Найденные P_{xn} , P_{xc} и P_x при различных значениях \overline{z} и \overline{x} и соответствующих им по рис. 149 δ'_{xn} и δ'_{xc} сведены в табл. 121. При этом максимальное значение P_x получено: для сваи d=0,5 м при $\overline{x}=0$, а для сваи d=1,0 м — при x=0,15.

Рис. 154. Эпюры горизонтальной составляющей удельной нагрузки от волн P_x при Q_M слева-для сваи d=0.5 м; справа-для сваи d=1.0 м при $\overline{x}=0.15$.

Построение эпюры удельной волновой нагрузки и определение точки приложения равнодействующей. Превышение вершины волны над расчетным уровнем по п. 20 приложения 1 (рис. 118 (40)) при вычисленных ранее $\frac{H}{\overline{\lambda}_{r,n}} = 0,096$ и $h_{np1\%} = 11,38$ м $\eta_{B} = 0,8 \cdot 11,38 = 9,104$ м; тогда по формуле 233

$$H_0 = 15 + 9,104 - 11,38 = 12,72$$
 м.

Таблица 121

 	$\bar{x} = 0,5$			$\overline{x} = 0.8$		$\overline{x} = 1,0$
Р _{ХН} тс/м	Р _{хс} тс,'м	Р х тс/м	Р _{хн} тс/м	P _{XC} TC/M	Р _х тс/м	$P_x = P_{xc}$
 d = 0.5 0.209 0.126 0.098 0.083 0.078 0.069	0,105 0,054 0,043 0,037 0,031 0,029	0,314 0,180 0,141 0,120 0,109 0,098	0,124 0,075 0,058 0,049 0,046 0,041	0,295 0,151 0,120 0,103 0,088 0,079	0,171 0,076 0,062 0,054 0,042 0,038	0,558 0,287 0,226 0,196 0,166 0,151
a = 1,0 M $0,836$ $0,505$ $0,396$ $0,33$ $0,315$ $0,274$	0,21 0,108 0,085 0,074 0,063 0,057	1,046 0,613 0,481 0,404 0,378 0,331	0,496 0,3 0,235 0,196 0,187 0,163	0.589 0.303 0.239 0.207 0.175 0.159	0,093 0,003 0,004 0,011 0,012 0,004	1,116 0,573 0,453 0,392 0,332 0,302

Возвышение профиля волны η над уровнем подошвы по формуле (234) и по рис. 152 при ранее вычисленных $\frac{\pi^2 H}{g^{\frac{1}{7^2}}} = 0,15, \quad \frac{\pi^2 h}{g^{\frac{1}{7^2}}} = 0,114$ и при $\overline{x} = 0,15, \quad \eta = \psi' h = 0,86 \cdot 11,38 = 9.8$ м, где $\psi' = 0,86$.

Используя данные табл. 121 для сваи d = 0,5 м при $\overline{x} = 0$ и для сваи d = 1,0 при $\overline{x} = 0,15$, построены эпюры удельной волновой нагрузки при $Q_{\rm M}$ на рис. 154.

Ордината точки приложения волновой нагрузки на сваи определяется как ордината центра тяжести площади эпюры.

Цополнение 4

ДИНАМИЧЕСКИЙ РАСЧЕТ СКВОЗНЫХ СООРУЖЕНИЙ НА ВОЗДЕЙСТВИЕ НЕРЕГУЛЯРНЫХ ВОЛН В ГЛУБОКОВОДНОЙ ЗОНЕ МОРЯ

В соответствии с п. 3.16 СНиП II-57-75 при отношениях периода собственных колебаний сооружения к среднему периоду волн $\frac{\tau_c}{\bar{\tau}} > 0,3$ необходимо выполнять динамический расчет сооружения. Ниже приводится метод такого расчета.

Исходные предпосылки

1. Настоящие рекомендации распространяются на расчет отдельно стоящих опор с диаметром сечения $d < 0.5h_{1\%}$ и сквозных сооружений (типа крупноблочных оснований на решетчатых опорных блоках, самоподъемных ПБУ и т. д.): при $\frac{H}{\bar{\lambda}} \ge 0.30$ и при $\frac{\tau_c}{\bar{\tau}} \ge 0.30$ (гибкие сооружения), где $\tau_c = \frac{2\pi}{\Omega_1}$ — период первой формы колебаний сооружения, с; Ω_1 — частота первой формы колебаний сооружения, рад/с; $\bar{\tau}$ — средний период волн, с; $h_{1\%}$ — расчетная высота волны *i*-го процешта обеспеченности, м; $\bar{\lambda}$ средняя длина волн, м; H — глубина моря у сооружения, м.

2. Средние элементы волны (высота \overline{h} , длина $\overline{\lambda}$ и период $\overline{\tau}$) расчетного шторма определяются по приложению 1.

3. Функция спектральной плотности волновых колебаний определяется по данным Гидрометеослужбы и Регистра СССР. В частности, для Каспийского и Черного морей рекомендуется использовать формулу

$$S_{\eta}(\omega, 0) = 0.0795 \bar{h}^{2} \bar{\tau} \left\{ \left(\frac{\omega}{\bar{\omega}} \right)^{-7} \exp\left[-0.785 \left(\frac{\omega}{\bar{\omega}} \right)^{-4} \right] \right\}, \ M^{2}c, \qquad 239$$

где <u>ш</u> — частота спектральных составляющих, рад/с;

ω — средняя частота видимых воли, рад/с.

Определение функции спектральных плотностей волновых нагрузок в характерных точках опор сооружения

4. Волновые нагрузки на вертикальные опоры сооружений рассматриваются, как сосредоточенные силы, приложенные в некоторых характерных точках этих опор (рис. 155). Сплошные и сквозные опоры сооружений разбиваются на n участков длиной Δz_i , м, по высоте; при этом за характерные точки принимаются центры участков при сплошных опорах или узлы решетчатых конструкций. Для решетчатых конструкций Δz_i следует принимать равным расстоянию между узлами на стойках. Первая от свободной поверхности характерная точка t располагается на глубине $\frac{1}{2} \Delta z_i$ от спокойного уровня (рис. 155). Вверх и вниз от точки tразмещаются остальные характерные точки.

Распределенные массы μ , тс \cdot с²/м², сплошных опор заменяются сосредоточенными в характерных точках, а в опорах шарнирно-стержневой конструкции — в узлах.

5. Взаимные спектры сосредоточенных волновых нагрузок, действующих в точках с координатами z_i и z_s , определяются с учетом взаимной корреляции волновых нагрузок по глубине:

$$S_{Q_i Q_s}(\omega, z_i, z_s) = [3a_i a_s \sigma_v(z_i) \sigma_v(z_s) + b_i b_s \omega^2] \omega^2 S_\eta(\overline{\omega}, 0) \times \\ \times \exp\left(-\frac{z_i + z_s}{g} \omega^2\right) \exp\left(-\frac{|z_i - z_s|}{g} \omega^2\right), \ \mathrm{Tc}^2 \cdot \mathrm{c}; \qquad 240$$

- где ai, as, bi, be параметры, определяющие величину сосредоточенных волновых нагрузок, вычисляемые по п. 6;
 - z, z, координаты характерных точек, отсчитываемые от спокойного уровня вниз, м;
 - частота спектральных составляющих, рад/с;

Рис. 155. Схема воздействия сосредоточенных волновых нагрузок на опору сооружения.

 $S_{\eta}(\omega, 0)$ — определяется по п. 3;

g — ускорение силы тяжести, м/с²;
 σ_v — стандарт горизонтальной составляющей орбитальной скорости на глубине z от свободной поверхности, определяемый по формуле

$$\sigma_{v}(r) = \sigma_{n}(0) \overline{\omega} k_{v}(r), \quad M/c, \qquad 241$$

где $\sigma_{\tau_i}(0) = \frac{\overline{h}}{\sqrt{2\pi}}$ - стандарт волновых колебаний на свободной поверхности, м; $r = z \omega^2$. — безразмерная глубина; $k_w(r)$ — безразмерный коэффициент затухания стандарта волновых скоростей, определяемый по рис. 156.

6. Параметры a_i , тс · c²/м², и b_i , тс · c²/м, скоростной и инерционной составляющих сосредоточенной волновой напрузки, действующей в *i*-й точке, определяются по формулам:

для сплошных круглоцилиндрических опор

$$a_{i} = \rho \frac{d_{i}C_{x}}{2} \Delta z_{i}, \quad b_{i} = \rho \frac{\pi d_{i}^{2}}{4} C_{\mu} \Delta z_{i}; \qquad 242$$

для решетчатых систем

Рис. 156. График коэффициента затухания стандарта горизонтальной составляющей скорости с глубиной k_v.

$$a_{i} = \frac{1}{4} \rho \sum_{j=1}^{j} C_{xj} l_{j} d_{j} \cos \alpha,$$
243
$$b_{i} = \frac{1}{4} \rho \sum_{j=1}^{j} C_{xj} l_{j} d_{j}^{2} + \frac{\pi d_{j}^{2}}{2}$$

$$b_i = \frac{1}{2} \rho \sum_{j=1}^{L} C_{ij} t_j - \frac{1}{4},$$

D — ПЛОТНОСТЬ ВОЛЫ, TC·C²/M⁴;

- где ρ плотность воды, тс · c²/м⁴; *d_i* — диаметр сплошной опоры в точке *i*, м;
- d_j, l_j соответственно, диаметр и длина *j*-го стержня, относящегося к узлу *i*, м;
 - и_j угол наклона *j*-го стержия, примыкающего к узлу *i*, к плоскости, перпендикулярной лучу волны;
 - f число стержней, сходящихся в узле i;
 - C_x коэффициент лобового сопротивления, для цилиндрических эломентов $C_x = 1$; допускается уточнение значений коэффициента C_x для различных форм поперечных сочений элементов на основе опытных данных;
 - С_н коэффициент инерционного сопротивления, для цилиндричееких элементов С_н=2,0.

Если длина участка Δz_i принята равной расстоянию между несмежными узлами, то параметры a_i и b_i (формулы 243) должны быть определены с учетом всех узлов, расположенных на рассматриваемом интервале.

Расчет динамических характеристик сооружений

7. Расчетная схема сооружения должна отражать основные свойства конструкции и условия ее закрепления на дне моря (шарнир, заделка). Реальные сооружения при $L \leq 0.25 \,\overline{\lambda}$ можно рассматривать, как системы с одной степенью свободы, соответственно чему учитывается только первая форма свободных колебаний. При определении частоты и формы колебаний можно рассматривать пространственные четырехопорные сооружения (например, самоподъемные ПБУ) как плоские рамные конструкции (рис. 157, *a*). При этом следует принимать $I_p = \frac{I_n}{2}$ и $m_p = \frac{m_n}{2}, \frac{\mathsf{тс} \cdot \mathsf{м}^2}{\mathsf{м}}$,

где $I_{\rm p}$ и $I_{\rm n}$, м⁴, соответственно моменты инерции ригеля плоской рамы и понтона (верхней платформы) сооружения. Жесткость ригеля плоской рамы $EI_{\rm p}$ можно принимать равной бесконечности, если выполняется условие $\frac{LI}{2U_{\rm p}} < 0,1$,

где l — момент инерции стоек рамы, м⁴; E — модуль упругости материала конструкции, тс/м²; L — пролет рамы, м; l — высота рамы от плоскости опирания до оси ригеля, м.

8. При абсолютно жестком ригеле каждая опора рамы может рассматриваться, как одиночный стержень с сосредоточенной наверху массой $m_0 = \frac{1}{2} m_p$, $\frac{\text{тс c}^2}{M}$, и соответствующими условиями опирания (рис. 157, б).

При вычислении частоты первой формы колебаний Ω_1 , рад/с, допускается рассматривать опору, как невесомый стержень с сосредоточенной массой $m, \frac{\text{тс.}c^2}{M}$ наверху (рис. 157, s).

Рис. 157. Расчетные схемы сооружений а-типы рамных конструкций; б и в-расчетные схемы опоры.

Масса т определяется по формуле

$$m = m_0 + m_{\mu\nu}$$
, TC · C²/M, 244

где m_{пр} — приведенные к осн ригеля масса опоры от низа платформы до дна и масса воды, заключенная в полости опор.

При отсутствии воды в полости опор значения m_{np} для некоторых характеристик схем сооружений вычисляются по табл. 122, в которой μ_0 , тс • c^2/M^2 — равномерно распределенная по длине масса конструкций опор. Масса воды в полости опор μ_1 , тс • c^2/M^2 , распределенная лишь по части длины опор, приводится к массе μ_{np} , тс • c^2/M^2 , равномерно распределенной по всей длине опор, по табл. 123.

Таблица 122

№ п/п	Тип конструкции	Расчетная схема стержня	Схема приведе- ния масс	Расчетные формулы
1	2	3	4	5
1	εJ μο			$m_{np} \Rightarrow 0.236 \mu_0 l$
2	$J_{\rho} = \infty$ EJ μ_{σ} μ_{σ} μ_{σ}	<u>μημημ</u> ΕJ μο		$m_{\rm np}=0,372\mu_0 l$
3	$J_{\rho} = \infty$	EJ (<u>μ</u> ο		$m_{np} = 0.485_{40}l$

Присоединенная масса воды при расчете Ω_1 не учитывается при соблюдении условия $\frac{m_0}{\mu I} \ge 1,0$, где $\mu = \mu_0 + \mu_{\pi p}$.

9. Частоты Ω_1 , рад/с, собственные формы и соответствующие им усилия определяются по формулам динамики сооружений. Для некоторых характерных типов сооружений при учете влияния продольной силы в опорах от веса платформы с оборудованием и конечной жесткости ригеля рамы расчет частоты, форм и соответствующих усилий производится по табл. 124. Для тех же типов сооружений без учета продольной силы в опорах и при бесконечно большой жесткости ригеля рамы расчеты выполняются по табл. 125. Если частоты Ω_1 , вычисленные по табл. 124 и 125, различаются не более чем на 5%, то все расчетные характеристики следует принимать по табл. 125. Если частоты Ω_1 следует принимать по табл. 125. Если частоты Ω_1 следует принимать по табл. 125. Если частоты различаются в пределах от 5% до 20%, то расчетные значения частоты Ω_1 следует принимать по табл. 125 без учета продольной силы. Если частоты различаются более чем на 20%, то все расчеты следует выполнять с учетом продольной силы по табл. 124.

Таблица 123

№ п/п	Тип конструкции	Расчетная схема стержня	Схема приведения масс	Расчетные формулы
1	2	3	4	5
1	2 <i>µ</i> , <i>i</i> ,	k ₁	μ _{ηρ} μ _{ηρ}	$\mu_{np} = \frac{k_1}{0.236} \mu_1 \frac{l_1}{l};$ $k_1 = \frac{1}{4} \left[\frac{9}{5} \left(\frac{l_1}{l} \right)^4 - \left(\frac{l_1}{l} \right)^5 + \frac{1}{7} \left(\frac{l_1}{l} \right)^6 \right]$
2	$ \frac{J_{\rho}=\infty}{l_{1}} $			$\mu_{\rm np} = \frac{k_1}{0.372} \mu_1 \frac{l_1}{l};$ $k_1 = \left[\frac{9}{5} \left(\frac{l_1}{l}\right)^4 - 2\left(\frac{l_1}{l}\right)^5 + \frac{4}{7} \left(\frac{l_1}{l}\right)^6\right]$
3	$EJ_0 = \infty$	<i>u</i> , <i>µ</i> ,		$\mu_{np} = \frac{k_1}{0.485} \mu_1 \frac{l_1}{l};$ $k_1 = \frac{1}{4} \left[3 \left(\frac{l_1}{l} \right)^2 - \frac{6}{5} \left(\frac{l_1}{l} \right)^4 + \frac{1}{7} \left(\frac{l_1}{l} \right)^6 \right]$

Расчет перемещений и усилий в конструкциях

10. Стандарты перемещений σ_x , момента σ_M , поперечной силы σ_Q , продольной силы σ_N в сечении опоры с координатой y от волновых воздействий определяются по формулам: стандарт перемещения

$$\sigma_x = X_1 \frac{A}{B}, \text{ m}; \qquad 245$$

стандарт момента

$$\sigma_{\rm M} = M_1 \frac{A}{B}, \ {\rm TCM}; \qquad 246$$

стандарт поперечной силы

$$\sigma_Q = Q_1 \frac{A}{B}, \text{ rc;} \qquad 247$$

стандарт нормальной силы

$$\sigma_N = N_1 \frac{A}{B}, \text{ tc,} \qquad 248$$

где X₁, M₁, Q₁, N₁ — ординаты первой собственной формы перемещений и усилий в сечении с координатой *у* (табл. 124 и 125).

Параметры А и В определяются по формулам

$$A = \frac{\pi}{\varrho_1 \sqrt{20\varrho_1}} \sqrt{\sum_{i=t}^{n} \sum_{s=t}^{n} X_{i1} X_{s1} S_{\varrho_i \varrho_s}(\varrho_1, z_i, z_s)}, \text{ tc} \cdot \text{mc}^2, \qquad 249$$

235

№ п/п	Расчетная схема	Частоты 1-й фор- мы колебаний	Формы и усилия
1	$P = mg$ m EJ y $\chi = \frac{y}{l}$	$Q_1 = \sqrt{\frac{3EH_1}{ml^3}}$	$X_{1} = \frac{l}{v^{2} \eta_{1}(v)} \left[\varphi_{1}(v) \left(1 - x - \cos vx + \frac{\sin vx}{v} \right) + \frac{v^{2}}{3} \left(x - \frac{\sin vx}{v} \right) \right], \text{ M};$ $M_{1} = -\frac{El}{l} \left[\frac{\varphi_{1}(v)}{\eta_{1}(v)} \cos vx - \frac{\sin vx}{v} \right],$ $TC \cdot M;$ $Q_{1} = \frac{El}{l^{2}} \left[\frac{\varphi_{1}(v)}{\eta_{1}(v)} v \sin vx + \cos vx \right], \text{ Tc}$
2	$R = mg p$ EJp m μ, EJ	$\Omega_{1} = \sqrt{\frac{6EI}{ml^{3}}} \sqrt{\frac{2}{\eta_{1}} \left(\frac{v}{2}\right) - \frac{3q_{1}^{2}\left(\frac{v}{2}\right)}{2q_{2}\left(v\right) + 3\frac{H_{p}}{LI}}}$	$X_{1} = [\alpha\beta - (\nu x - \sin \nu x)\gamma]\frac{z_{1}l}{\nu} +$ + $[(\nu x - \sin \nu x)\sin \nu - \beta\gamma]z_{2}, M;$ $M_{1} = (\gamma \sin \nu x - \alpha \cos \nu x) Elv \frac{z_{1}}{l} +$ + $(\gamma \cos \nu x - \sin \nu \cdot \sin \nu x) Elv^{2}\frac{z_{2}}{l^{2}},$ TC·M; $Q_{1} = (\alpha \sin \nu x + \gamma \cos \nu x) Elv^{2}\frac{z_{1}}{l^{2}} -$ - $(\gamma \sin \nu x + \sin \nu \cos \nu x) Elv^{3}\frac{z_{2}}{l^{3}},$ TC
3	$m = mg = mg$ $E J p m$ $E J$ y $x = \frac{y}{l}$	$Q_{1} = \sqrt{\frac{3EI}{ml^{3}}} \sqrt{\frac{\eta_{1}(v) - \frac{v^{2}}{6} \frac{IL}{l_{p}l} \varphi_{1}(v)}{1 + \frac{IL}{2I_{p}l} \varphi_{1}(v)}}$	$X_{1} = l (xv \cos v - \sin vx) - \frac{1}{2} - xv^{2} \frac{\sin v}{3} \frac{IL}{2I_{p}l}, M;$ $M_{1} = -\frac{El}{l} v^{2} \sin vx, \text{ TC.} M;$ $Q_{1} = -\frac{El}{l^{2}} v^{3} \cos vx, \text{ TC}$

Значения коэффициентов в схемах 1, 2, 3

$$v = l \sqrt{\frac{P}{EI}}$$

$$\varphi_1(v) = \frac{v^2}{3\left(1 - \frac{v}{tg\,v}\right)}; \quad \varphi_1\left(\frac{v}{2}\right) = \frac{\left(\frac{v}{2}\right)^2}{3\left(1 - \frac{v}{tg\,v}\right)}; \quad \varphi_2(v) = \frac{1 - \frac{v}{tg\,v}}{4\left(\frac{tg\,\frac{v}{2}}{2} - 1\right)};$$

$$\eta_1(v) = \varphi_1(v) - \frac{v^2}{3}; \quad \eta_1\left(\frac{v}{2}\right) = \varphi_1\left(\frac{v}{2}\right) - \frac{\left(\frac{v}{2}\right)^2}{3};$$

$$\alpha = v - \sin v; \quad \beta = 1 - \cos vx; \quad \gamma = 1 - \cos v;$$

$$z_1 = \frac{IL}{I_pl} \varphi_1\left(\frac{v}{2}\right); \quad z_2 = l \left[3 + \frac{2IL}{I_pl} \varphi_2(v)\right].$$

Таблица 125

№ п/п	Тип конструкции	Расчетная схема	Частоты первой формы колебан.	Формы и усилия
1	$ \frac{m_0}{2} $ $ \frac{\mu}{2} $ $ \frac{\mu}{2} $ $ \frac{\mu}{2} $	EJ	$a_1 = \sqrt{\frac{3EI}{ml^3}}$	$X_{1} = \frac{x^{2} (3 - x)}{2} l, m;$ $M_{1} = -3EI (1 - x) \frac{1}{l}, \text{ tc} \cdot m;$ $Q_{1} = 3EI \frac{1}{l^{2}}, \text{ tc}$
2	$ \begin{array}{c} m_{p} EJ_{p} = \infty \\ \mu, EJ \\ j \\ m_{T} \mu, EJ \\ \mu$	m EJ	$Q_1 = \sqrt{\frac{12EI}{ml^3}}$	$X_{1} = x^{2} (3 - 2x) l, m;$ $M_{1} = -6EI (1 - 2x) \frac{1}{l}, \text{ tc} \cdot m;$ $Q_{1} = 12EI \frac{1}{l^{2}}, \text{ tc}$
3	$ \begin{array}{c} m_{g} E J_{p} = \infty \\ \mu_{e} E J_{p} = \infty $	EJ	$Q_1 = \sqrt{\frac{3EI}{ml^3}}$	$X_{1} = \frac{\chi (3 - \chi^{2})}{2} l, \text{ m};$ $M_{1} = -3EI\chi \frac{1}{l}, \text{ tc} \cdot \text{m};$ $Q_{1} = 3EI \frac{1}{l^{2}}, \text{ tc}$

причем *t* — номер той точки, в которой приложена первая сверху сосредоточенная волновая нагрузка;

$$B = \sum_{i=0}^{n} m_i X_{ii^2}, \text{ tc} \cdot \text{mc}^2, \qquad 250$$

где знак суммирования распространяется на все массы, сосредоточенные по стойке, включая массу m_0 на верхнем конце стержня (рис. 155); m_i —масса, сосредоточенная в точке i; $S_{Q_iQ_s}(\Omega_1, z_i, z_s)$ — определяется при $\omega = \Omega_1$ по формуле 240; $X_{i1}, X_{s\,i}$ — ординаты первой собственной формы колебаний, определяемые, соответственно для точек z_i н z_s по табл. 124, 125. При этом $y_i = H + \Delta H - z_i$, $y_s = H + \Delta H - z_s$, где ΔH — заглубление пяты опоры нли расчетной плоскости заделки опоры в грунт; δ — логарифмический декремент затухания, принимаемый равным 0,3; допускается использовать значения δ , полученные в результате натурных исследований морских глубоководных сооружений.

Рис. 158. График коэффициентов обеспеченности.

11. При расчете рамных систем учет взаимосвязи между волновыми воздействиями на первый и второй (по лучу волны) ряды опор (при $L \leq 0.25 \lambda$) производится путем умножения стандартов реакций, вычисленных по формулам 245—248, на коэффициент взаимосвязи $k_{\rm B3}$, определяемый по формуле:

$$k_{B3} = \frac{1}{\sqrt{2}} \sqrt{1 + \cos \frac{\overline{\omega^2 L}}{g}}, \qquad 2\hat{5}1$$

где L - расстояние между осями опор рамы, м.

12. Расчетные перемещения $X_{i_{3}}$, момент $M_{i_{3}}$, поперечная сила $Q_{i_{3}}$, продольная сила $N_{i_{3}}$ определяются по формулам:

$$X_{i\%} = n_{i\%} \sigma_X, \text{ m}; \qquad 252$$

$$M_{1\%} = n_{1\%}\sigma_M$$
, TC·M; 253

$$Q_{i_{2}} = n_{i_{2}}\sigma_{O}, \text{ tc;}$$
 255

$$N_{i\%} = n_{i\%} \sigma_{N'}, \text{ tc},$$
 254

где n_{i%} — коэффициенты обеспеченности, соответствующие расчетной обеспеченности i%, определяются по и. 13.

13. Коэффициенты обеспеченности $n_{i\%}$, определяются в зависимости от расчетного значения обеспеченности реакций i% следующим образом:

а) в случае преобладания инерционной составляющей волновой нагрузки на опоры (при $\frac{d_{макс}}{\hbar} > 0.3$, где $d_{макс}$ — наибольший поперечный размер сечения элементов опоры) коэффициенты $n_{l\%}$ следует определить по кривой A графика, приведенного на рис. 158;

б) при преобладании скоростной составляющей волновой нагрузки на опоры (при $\frac{d_{\text{макс}}}{\bar{h}} < 0,10$) коэффициенты определяются по другим кривым этого же графика в зависимости от отношения $\frac{\omega_{\text{макс}}}{\Omega_1}$, где $\omega_{\text{макс}}$ —частота максимума спектра волновых колебаний;

в) при $\frac{d_{\text{макс}}}{\tilde{h}} = 0,1 \div 0,30$ значения коэффициентов определяются линейной интерполяцией величин, полученных по пп. а и б.

Расчетные значения обеспеченности реакций *i*% принимаются равными расчетной обеспеченности высот волн в системе по табл. 89(35) настоящего Руководства.

Рис. 159. К расчету СПБУ

а-общая схема сооружения; б-расчетный тип конструкции; в-расчетная схема конструкции при вычислении периода первой формы колебаний; г-схема распределения сосредоточенных масс; д-эпюра ординат первой формы свободных колебаний (X₁₁).

Пример 74. Определить усилия в опорах самоподъемной плавучей буровой установки СПБУ при воздействии нерегулярных волн. Схема установки приведена на рис. 159.

Исходные данные.

Расчетные параметры воли: средняя высота $\overline{h} = 4,52$ м; средний период $\overline{\tau} = 11,4$ с; средняя частота $\overline{\omega} = \frac{2\pi}{\overline{\tau}} = 0,551$ рад/с, глубина моря H = 60 м.

Опоры СПБУ — пустотелые круглоцилиндрические металлические колониы: полная длина 100,5 м, наружный диаметр 5 м, момент инерции $I=3,206 \text{ м}^4$, площадь поперечного сечения $F=1,071 \text{ м}^2$, модуль упругости $E=2,1\cdot10^7 \text{ тс/м}^2$, погонный вес металла колонн 9,83 тс/м. Полости колони от спокойного уровня воды до подошвы заполнены водой (площадь сечения полости 16,60 м²). Пролет между опорами L=37,8 м. Возвышение нейтральной оси понтона над уровнем спокойного горизонта 17,5 м. Заглубление подошв опор ниже уровня дна в илистый грунт 15 м. Момент инерции понтона, как ригеля плоской Π -образной рамы $I_p=12,25 \text{ м}^4$. Полный вес понтона $P_{II}=8470 \text{ тс.}$ Логарифмический декремент $\delta=0,30$.

Решение.

1. Выбор расчетной схемы сооружения. В качестве расчетной схемы принимается плоская Π -образная рама с шарнирным опиранием стоек в плоскости их подошвы (рис. 159, б). Полная высота рамы l=92,5 м. Частичное защемление опор в грунте и трение о грунт не учитываются.

В соответствии с п. 7 вычисляем параметр $\frac{L_1}{2l_p} = \frac{37,8\cdot3,206}{2\cdot92,5\cdot12,25} =$ = 0,054 < 0,1; поэтому (п. 7) можно принимать ригель рамы бесконечно жестким, т. е. $I_p = \infty$.

2. Расчет частоты (периода) собственных колебаний соорижения.

а) Определение сосредоточенной массы ригеля плоской рамы и распределенной массы опор.

Сосредоточенная масса ригеля равна сумме половины массы понтона и массы участков двух опор выше нейтральной оси ригеля

$$m_{\rm p} = \frac{1}{9.81} \left(\frac{8470}{2} + 2.983 \cdot 8 \right) = 448 \ {\rm tc} \cdot {\rm c}^2 / {\rm m}.$$

Распределенная масса металлоконструкций опор, одинаковая по всей высоте опор. равна

$$\mu_0 = \frac{9,83}{9,81} \cong 1,00 \text{ tc} \cdot \text{c}^2/\text{M}^2.$$

Погонная масса воды в полости опор на длине $l_1 = 75$ м от подошвы опор до уровня спокойного горизонта равна

$$\mu_1 = \frac{16,60 \cdot 1,0}{9,81} = 1,695 \text{ tc} \cdot \text{c}^2/\text{M}^2.$$

б) Определение масс для расчетного стержня. В соответствии с принятой расчетной схемой, сооружение приводится к схеме стержня, жестко заделашного на уровне ригеля и шарнирно опертого на уровне подошвы стоек (рис. 159, в).

Расчетную сосредоточенную на верхнем конце стержня массу определяем по формуле 244

при
$$m_0 = \frac{1}{2} \cdot 448 = 224 \text{ тс} \cdot \text{c}^2/\text{м}.$$

Приведенную сосредоточенную массу опоры и воды в полости опоры вычисляем согласно табл. 122, схема 3, по формуле

$$m_{\rm inp} = 0.485 \,(\mu_0 + \mu_{\rm inp}) \,l,$$

где µпр — приведенная к полной длине распределенная масса воды полости стоек, онределяемая по табл. 123, схема 3.

При
$$\frac{l_1}{l} = \frac{75}{92,5} = 0,812$$
 имеем:
 $k_1 = \frac{1}{4} \left(3 \cdot 0,812^2 - \frac{6}{5} \cdot 0,812^4 + \frac{1}{7} \cdot 0,812^8 \right) = 0,347,$
 $\mu_{\rm np} = \frac{0,347}{0,485} \cdot 1,695 \cdot 0,812 = 0,985 \ {\rm tc} \cdot {\rm c}^2/{\rm m}^2,$

$$m_{\pi p} = 0.485 (1.0 \pm 0.985) 92.5 = 89.0 \text{ tc} \cdot \text{c}^2/\text{M}.$$

тогда по формуле 244 m = 224 + 89,0 = 313 тс $\cdot c^{2}/M$.

Так как отношение $\frac{m_0}{(\mu_0 + \mu_{np}) l} = \frac{224}{1,985 \cdot 92,5} = 1,22 > 1,0$, то влияние присоединенной массы воды на период собственных колебаний не учитываем (п. 8).

в) Частоту первой формы собственных колебаний сооружений Ω₁ определим соответственно указаниям, приведенным в п. 9, без учета влияния продольной силы по табл. 125 и с учетом последней по табл. 124.

Без учета продольной силы, согласно схеме 3 табл. 125, получаем

$$\Omega_1 = \sqrt{\frac{3 \cdot 2, 1 \cdot 10^7 \cdot 3, 206}{313, 0.92, 5^3}} = 0,897 \text{ pag/c}.$$

При учете продольной силы, поскольку жесткость ригеля принята бесконечной ($I_p = \infty$), согласно схеме **3**, табл. 124, имеем (при $\frac{I}{I_p} = 0$)

$$\Omega_1 = \sqrt{\frac{3EI\eta_1(v)}{ml^3}} = 0.897 \sqrt{\eta_1(v)}.$$

где

$$v = 92,5 \sqrt{\frac{313,0.9,81}{2,1.10^7 \cdot 3,206}} = 0,712;$$

$$\eta_1(v) = \frac{0,712^2}{3\left(1 - \frac{0,712}{1g\,0,712}\right)} - \frac{0,712^2}{3} = 0,798;$$

следовательно, $\Omega_1 = 0.897 \sqrt{0.798} = 0.897 \cdot 0.892 = 0.797$ рад/с.

Период собственных колебаний сооружения без учета продольной силы равен

$$\tau_{\rm c} = \frac{2\pi}{0,897} - 7,0$$
 c,

а с учетом продольной силы

$$\tau_{\rm c} = \frac{2\pi}{0,797} = 7,88$$
 c.

Поскольку разница периодов составляет $\frac{7.88 - 7.0}{7.0} \cdot 100\% = 12,6\% < < 20\%$, то в дальнейшем, согласно п. 9 с целью упрощения расчетов, за расчетную частоту собственных колебаний примем $\Omega_1 = 0,797$ рад/с (период $\tau_0 = 7.88$ с), а ординаты форм перемещений и усилий будем вычис-

риод $\tau_c = 7,88$ с), а ординаты форм перемещений и усилий будем вычислять без учета влияния продольной силы по табл. 125.

Так как $\frac{\tau_c}{\tau} = \frac{7,88}{11,4} = 0,692 > 0,3$, следует—согласно н. 3.16 СНиП II-57-75—выполнить динамический расчет ПБУ на воздействие нерегулярных волн, при котором надлежит определить горизонтальные

перемещения понтона, изгибающие моменты в месте заделки опор в понтон, поперечные и продольные силы в опорах.

3. Расчет динамических характеристик сооружения (рис. 159).

а) Разбиваем опору по высоте на участки длиной $\Delta z_i = 3,0$ м в соответствии с п. 4 (рис. 159, *г*). Сосредоточенные в центре участков (характерных точках) массы равны

$$m_i = (\mu_0 + \mu_{\Pi D}) \Delta z_i = (1, 0 + 1, 06) 3, 0 = 6, 18 \text{ TC} \cdot C^2/M.$$

б) Ординаты первой формы колебаний X_{ii} вычисляем по формуле, относящейся к схеме 3 табл. 125, где $\varkappa = \frac{y_i}{l}$, y_i — расстояние от шарнира до *i*-й характерной точки (центра участка Δz_i), l=92,5.

Эпюра X_{i1} представлена на рис. 159, ∂ .

в) Ординаты форм перемещений и усилий, соответствующие первой форме колебаний, определяем в расчетном сечении — в месте заделки опоры в понтон, которому соответствует координата y=92.5 м. Тогда $x=\frac{92.5}{92.5}=1.0$, и по формулам для схемы 3 табл. 125 расчетные значения ординат перемещений и усилий равны:

перемещений

$$X_1 = \frac{1(3-1^2) \cdot 92,5}{2} = 92,5 \text{ m};$$

изгибающего момента

$$M_1 = -3 \cdot 2, 1 \cdot 10^7 \cdot 3,206 \frac{1}{92,5} = -2185000 \text{ tc} \cdot \text{m};$$

241

поперечной силы

$$Q_1 = 3 \cdot 2, 1 \cdot 10^7 \cdot 3,206 \frac{1}{92,5^2} = 23600 \text{ rc.}$$

г) Параметр В вычисляем по формуле 250, где $m_{i\neq0} = 6,18$ тс $\cdot c^{2}/M$, X_{i1} — ординаты *i*-х характерных точек указаны выше в п. 3, 6. При i = 0 ($y_0 = 92,5$ м) имеем $m_i = m_0 = 224$ тс $\cdot c^{2}/M$, $X_{01} = X_{\kappa 1} = 92,5$ м, в результате получаем

$$B = m_0 X_{01}^2 + \sum_{l=1}^n m_l X_{1l}^2 = 224.925^2 + 6.18 \sum_{l=1}^n X_{ll}^2 = 2720000 \text{ tc} \cdot \text{mc}^2.$$

4. Расчет функции спектральной плотности волновых нагрузок в характерных точках опоры сооружения при частоте $\omega = \Omega_1$.

Расчет производим по формуле 240 при $\omega = \Omega_1 = 0,797$ рад/с (п. 2, *в*). а) Параметр a_i для окоростной составляющей сосредоточенной нагрузки на участке опоры $\Delta z_i = 3,0$ м определяем по формуле 242 при $C_x = 1,0$

$$a_i = \frac{1,0\cdot 5,0\cdot 1,0}{9,81\cdot 2} \cdot 3,0 = 0,765 \text{ tc} \cdot c^2/M^2.$$

Параметр b_i для инерционной составляющей сосредоточенной нагрузки, действующей на участок цилиндрической опоры $\Delta z_i = 3,0$ м, определяем по формуле 242 при $C_n = 2,0$.

$$b_i = b_s = \frac{1.0}{9.81} \cdot \frac{\pi \cdot 5^2}{4} \cdot 2.0 \cdot 3.0 = 12.0 \text{ tc} \cdot c^2/\text{M}.$$

Найдем значения слагаемых формулы 240, заключенных в квадратную скобку, для уровня спокойного горизонта при $z_i = z_s = 0$. Тогда по формуле 241 при r = 0 и соответственно $k_v(r) = 1,0$ (рис. 156) стандарт

$$\sigma_v(0) = \frac{4.52}{\sqrt{2\pi}} \cdot 0.551 \cdot 1.0 = 0.973 \text{ m/c.}$$

Подставляя вычисленные значения, получим

$$3a_i a_s \sigma_v(z_i) \sigma_v(z_s) = 3.0 \cdot 0.765^2 \cdot 0.973^2 = 1.67 \text{ tc}^2 \cdot \text{c}^2/\text{M}^2$$

И

 $b_i b_s \Omega_{1^2} = 12^2 \cdot 0.797^2 = 92.0 \text{ tc}^2 \cdot \text{c}^2/\text{M}^2.$

Так как второе слагаемое существенно больше первого, то в дальнейших расчетах учитываем только инерционную составляющую волновой нагрузки.

б) Ордината спектра волновых колебаний на поверхности при $\omega = \Omega_1 = 0,797$ рад с, $\frac{\omega}{\omega} = \frac{\Omega_1}{\omega} = \frac{0,797}{0,551} = 1,447$, $\bar{h} = 4,52$ м, $\bar{\tau} = 11,4$ с по формуле 239 равна

 $S_{\eta}(\Omega_1, 0) = 0.0795 \cdot 4.52^2 \cdot 11.4 \{(1.447)^{-7} \exp[-0.785(1.447)^{-4}]\} = 1.165 \text{ m}^2/\text{c}.$

в) Взаимные спектры сосредоточенных волновых нагрузок, действующих в характерных точках z_i , z_s , вычисляем по формуле 240 при учете только инерционной составляющей ($b_i = b_s = 12 \text{ тс} \cdot \text{c}^2/\text{м}$) и $\omega = \Omega_1 = 0,797$ рад/с. Соответственно получаем

$$S_{Q_{i}Q_{s}}(\Omega_{1}, z_{i}, z_{s}) = b_{i}b_{s}\Omega_{1}^{4}S_{\eta}(\Omega_{1}, 0)\exp\left(-\frac{z_{i}+z_{s}}{g}\Omega_{1}^{2}\right)\exp\left(-\frac{|z_{i}-z_{s}|}{g}\Omega_{1}^{2}\right) = 12^{2} \cdot 0.797^{4} \cdot 1.165\exp\left(-\frac{z_{i}+z_{s}}{9.81} \cdot 0.797^{2}\right)\exp\left(-\frac{|z_{i}-z_{s}|}{9.81} \cdot 0.797^{2}\right) = 65.5\exp\left[-0.0648\left(z_{i}-z_{s}\right)\right]\exp\left[-0.0648\left|z_{i}-z_{s}\right|\right], \text{ tc c}^{2},$$

где z_i , z_s — ординаты характерных точек, отсчитываемые от спокойного уровня вниз, начиная от точки $t = \frac{\Delta z_t}{2} = \frac{3,0}{2} = 1,5$ м,

5. Расчет параметра A. По формуле 249 при δ=0,3 н Ω₁=0,797 рад/с

$$A = \frac{3,14\sqrt{67,5}}{0,797\sqrt{2 \cdot 0,3 \cdot 0,797}} = 46,5\nu, \ \mathrm{tc} \cdot \mathrm{c}^2,$$

где

$$v = \sqrt{\sum_{i=t}^{n} \sum_{s=t}^{n} X_{it} X_{s1} \exp\left[-0.0648 \left(z_{i} + z_{s}\right)\right] \exp\left(-0.0648 \left|z_{i} - z_{s}\right|\right)}$$

Расчет двойных сумм под знаком корня производим в табличной форме. В результате получено: v = 296 м, $A = 46,5 \cdot 296 = 13750$ тс мс².

6. Расчет коэффициента взаимосвязи k_{вз}

По формуле 251 при L = 37,8 м; $\overline{\omega} = 0,551$ рад с.

$$k_{\rm B3} = \frac{1}{\sqrt{2}} \sqrt{1 + \cos \frac{0.551^2 \cdot .37.8}{9.81}} = 0.837.$$

7. Расчет стандартов перемещений и усилий в месте заделки опоры в понтон.

Расчет стандартов производится по формулам 245—248 с учетом величины $k_{\rm B3}$ (п. 11).

По результатам приведенных выше вычислений отношение параметров $\frac{A}{B} = \frac{13750}{2720000} = 0,00505.$

Соответственно получаем:

стандарт перемещений

 $\sigma_X = 92,5 \cdot 0,00505 \cdot 0,837 = 0,391$ M;

стандарт изгибающего момента

 $\sigma_M = 2 \cdot 185000 \cdot 0,00505 \cdot 0,837 = 9250 \text{ tcm};$

стандарт поперечной силы

 $\sigma_{O} = 23600 \cdot 0.00505 \cdot 0.837 = 100 \text{ rc.}$

8. Определение расчетных величин реакций ПБУ.

Расчетные (обеспеченностью i = 1 %) перемещения понтона, изгибающие моменты и усилия в месте заделки опоры в понтон определены по формулам 252—254, где коэффициент $n_{1\%} = 3,0$ согласно п. 13 по рис. 158 (кривая A). Соответственно — с учетом вычисленных (п. 7) стандартов — получаем:

перемещения $X_{1\%} = 0,391 \cdot 3 = 1,173$ м;

нзгибающий момент $M_{1\%} = 9250 \cdot 3 = 27650$ тс · м;

поперечная сила $Q_{1\%} = 100 \cdot 3 = 300$ тс;

продольная сила в опоре без учета веса понтона с оборудованием $N_{1\%} = \frac{2M_{\kappa 1\%}}{L} = \frac{2 \cdot 27650}{37.8} = 1465$ тс.

Дополнение 5

ОПРЕДЕЛЕНИЕ ВЫСОТЫ НАКАТА ВОЛН НА ОТКОСНУЮ ОБЛИЦОВКУ, ПРИКРЫТУЮ ВНИЗУ ПЕСЧАНО-ГАЛЕЧНЫМ ПЛЯЖЕМ

Высоту наката волн на откос сооружения, расположенного на галечном или песчано-галечном пляже (рис. 160), рекомендуется определять с учетом волногасящего действия пляжа по формуле:

$$h_{\rm H} = z + k_{\Pi A} k_m \frac{2k_{\Delta} k_{\rm H\Pi} h}{m_{\alpha}} \sqrt[3]{\frac{\lambda}{h}}, \qquad 256$$

243

- где $m_{\alpha} = \operatorname{ctg} \alpha$, α угол наклона откоса сооружения к горизонту;
 - z возвышение точки пересечения поверхности пляжа с откосом сооружения над расчетным уровнем;
 - кал коэффициецат уменьшения высоты наката на откос сооружения, определяемый по номограмме, приведенной на рис. 161;
- k₁, k_{нп} коэффициенты шероховатости и проницаемости откоса сооружения, опредеделяемые по табл. 16(6);
 - k_m коэффициент, определяемый по табл. 126 в зависимости от коэффициента заложения откоса сооружения m_a.

Рис. 160. Схема к расчету наката волн на откос, покрытый галечным пляжем

1-профиль пляжа при штиле; 2-расчетный профиль пляжа.

Таблица 126

m _a	1,5	2	3	4	6	9	12	20
k _m	1,00	1,45	1,94	2,12	2,11	1,95	1,75	1,32

В тех случаях, когда коэффициенты заложений откосов надводной части пляжа $m_{\rm H}$ и подводной части $m_{\rm H}$ отличаются менее, чем на 10%, вводится в расчет средний коэффициент заложения откоса пляжа $m_{\rm H,I}$, считая его простирающимся от изобаты $H = H_{\rm KH}$ до точки пересечения пляжа с откосом сооружения. Исходя из средней величины $m_{\rm H,I}$, пологости расчетной волны $\frac{\bar{\lambda}}{h}$. и относительной ширицы надводной части пляжа $\frac{B}{h}$, находим искомое значение $k_{\rm H,I}$ по номограмме, приведенной на рис. 161.

Если же коэффициенты $m_{\rm H}$ и $m_{\rm n}$ отличаются более, чем на 10%, находится коэффициент приведения к однообразному уклону

$$n = \frac{k_{\Pi A \Pi 0}}{k_{\Pi A \Pi 0}}, \qquad 257$$

где $k_{\pi,\pi,\pi,0}$ — коэффициент $k_{\pi,\pi}$, определенный при значении B/h=0 для пляжа с уклоном его поверхности, равным фактическому уклону подводной части пляжа 1 : m_{π} ;

kил но — то же, определенный для иляжа с уклоном 1: m_н.

По найденному коэффициенту *n* и уклону **l**: *m*_н находится относительная приведенная ширина пляжа

$$\left(\frac{B}{h}\right)_{\rm np} = \frac{1}{n} \frac{B}{h}, \qquad 258$$

по которой определяется по рис. 161 промежуточное значение $k_{n,n}$, обозначаемое здесь величиной $k_{n,n,h}$. Расчетное значение коэффициента

$$k_{\Pi,\Pi} = n k_{\Pi,\Pi,\Pi}.$$
 259

Пример 75. Определить высоту наката волны на откос сооружения, показанный на рис. 160.

Исходные данные: коэффициент заложения откоса сооружения $m_a = 2,4$; $k_{\Delta}k_{\rm HII} = 0,9$ для бетонной облицовки и для пляжа по табл. 16(6); расчетная высота волны, имеющая обеспеченность 4% в режиме и 5% в системе, h = 3,3 м; глубина по линии последнего обрушения расчетной

Рис. 161. Номограмма для определения коэффициента $k_{\pi\pi}$ каждой зависимости (кривой) $\frac{\overline{\lambda}}{h}$, помещенной слева от нуля на оси абсцисс, соответствует семейство кривых *B*,*h*, помещенных на том же уровне и так же обозначенных на правой части номограммы (справа от нуля).

волны $H_{\rm kn} = 4,3$ м; толщина подвижного слоя наносов по урезу $\delta = 0,3h = = 1$ м, ширина пляжа при этом B = 3,6 м, $\frac{B}{h} = 1,09$; длина волны $\overline{\lambda} = 86$ м (по линии последнего обрушения), $\frac{\overline{\lambda}}{h} = 26$; возвышение точки пересечения поверхности пляжа (с учетом толщины подвижного слоя) с заданным откосом z = 0,60 м; коэффициент, найденный по табл. 126, $k_m = 1,65$; коэффициенты заложений откосов надводной части пляжа $m_{\rm H} = 6$, подводной — $m_{\rm B} = 9,2$.

Решение.

Так как значения $m_{\rm fl}$ и $m_{\rm h}$ отличаются более, чем на 10%, находим коэффициент приведения к однообразному уклону по формуле 257. Соответственно этому на левой нижней шкале номограммы (рис. 161) из точки, соответствующей $m_{\rm H}=6$, восстанавливаем перпендикуляр до пересечения с кривой для $\frac{\overline{\lambda}}{h}=26$. Положение этой кривой устанавливается интерполяцией. Затем из точки пересечения проводим горизонтальную прямую вправо до пересечения с кривой $\frac{B}{h}=0$, соответствующей $\frac{\overline{\lambda}}{h}=26$ и также найденной по интерполяции. Опуская перпендикуляр из этой точки пересечения на ось абсцисс, находим на ней значение $k_{\rm п.пно}=0,77$. Аналогичным образом находим значение $k_{\text{плно}} = 0,58$ при $m_{\text{п}} = 9,2$ и $\frac{\bar{\lambda}}{h} = 26$.

По формуле 257 коэффициент приведения $n = \frac{0.58}{0.77} = 0.75$. По формуле 258 приведенная относительная ширина

$$\left(\frac{B}{h}\right)_{\rm np} = \frac{1}{0.75} \cdot \frac{3.6}{3.3} = 1.45.$$

По вычисленной величине $\frac{B}{h} = 1,45$ и уклону надводного откоса пляжа 1 : $m_{\rm H} = 1$: 6 находим по рис. 161 $k_{\rm плн} = 0,49$. Тогда по формуле 259 искомый коэффициент $k_{\rm пл} = 0,75 \cdot 0,49 = 0,37$.

Подставляя заданные и найденные численные значения величин в формулу 256, находим искомую высоту наката волн на откос, отсчитываемую от расчетного уровня воды:

$$h_{\rm H} = 0.6 + 0.37 \cdot 1.65 \frac{2 \cdot 0.9 \cdot 3.3}{2.4} \sqrt[3]{26} = 5.1 \text{ m}.$$

Достаточность возвышения гребия сооружения полезно проверить повторением подобного расчета при сохранении отметок надводной части пляжа, как при штиле, и при том же значении $H_{\rm нп}$, т. е. в предположении, что подвижный слой наносов размывается только ниже уровня воды. Соответственно изменяются также значения коэффициентов $m_{\rm H}$ и $m_{\rm n}$ -

Дополнение 6

СКОРОСТИ ВЕТРА В ОСНОВНЫХ ПУНКТАХ ПОБЕРЕЖИЙ МОРЕЙ И ОКЕАНОВ СССР

Ниже (табл. 127) приводятся величины скоростей ветра, которые допускается учитывать в качестве расчетных при определении нагрузок на плавучие объекты, если отсутствуют данные метеорологических наблюдений или расположение метеостанции нехарактерно для объекта строительства.

Эти скорости соответствуют данным четырехсрочных круглогодичных наблюдений. Поэтому для пунктов с ограниченным временем навигации из-за ледового режима необходимо уточнять значения скоростей ветра с учетом их сезонного распределения, учитывая при этом ориентацию причала по отношению к направлению наибольшего ветра.

Дополнение 7

ОПРЕДЕЛЕНИЕ НАГРУЗОК НА АНКЕРНЫЕ ОПОРЫ И УСИЛИЙ В ЯКОРНЫХ СВЯЗЯХ В УСЛОВИЯХ ПЛОСКОЙ ЗАДАЧИ

Ниже излагаются рекомендации, обеспечивающие выполнение требований, приведенных в п. 5.5 главы СНиП II-57-75.

В системах заякорения плавучих объектов применяются якорные связи (цепи) без подвесных грузов (рис. 162) и с подвесными грузами (рис. 163). В обоих случаях могут применяться:

«длинные» цепи, когда перед каждой анкерной опорой имеется лежащий на дне участок цепи (на анкерные опоры передаются нагрузки по направлению лежащего на дне участка цепи);

«короткие» цепи, когда отсутствует лежащий на дне перед анкерной опорой участок цепи (на анкерные опоры передаются горизонтальные и вертикальные нагрузки).

№ пунк- тов	Географические пункты	W; м/с	∿№ пунк- тов	Географические пункты	W, м/с
1	2	3	1	2	3
	Черное море		54 55	Челекен Огурчинский, о-в	24 27
$ \begin{array}{c c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ \end{array} $	Измаил Вилково Приморское Белгород-Днестровский Ильичевск Одесса Очаков Николаев Херсон Тендра о-в Скадовск Хорлы	$\begin{array}{c} 30 \\ 30 \\ 22 \\ 21 \\ 25 \\ 27 \\ 24 \\ 26 \\ 26 \\ 23 \\ 23 \end{array}$	56 57 58 59 60 61 62 63 64	Балтийское море Калининград Светлогорск Клайпеда Швентойи Лиепая Вентспилс Даугаврива Рига Пярну	24 29 27 31 34 33 24 21 27
$ \begin{array}{r} 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ \end{array} $	Черноморское Евпатория Севастополь Херсонес, мыс Ялта Алушта Судак Феодосия Апапа Новороссийск Геленлжик	$\begin{array}{c} 23\\ 31\\ 32\\ 31\\ 31\\ 27\\ 28\\ 25\\ 22\\ 32\\ 42\\ 30\\ \end{array}$	65 66 67 68 69 70 71 72 73	Кингисепп (о-в Сааремаа) Ристна (о-в Хиума) Пакри Гогланд, о-в Таллин Нарва-Йыэсу Ломоносов Ленинград Выборг Пункты Северного	26 28 29 28 25 26 22 24 26
24 25 26 27 28 27 30	Туапсе Сочи Гагра Сухуми Анаклия Поти Батуми	32 28 27 27 32 33 30	74 75 76 77 78 79	Ледовитого океана Мотовский залив Вайда-Губа (Кольский залив) Полярный Мурманск Дальние Зеленцы Харлов, о-в	
31 32	Азовское море Керчь Мысовое	29 26	80 81 82 83	Пялица Кандалакша Кемь Онега	28 26 25 20
33 34 35 36 37 38 39 40 41 42	Геническ Бердянск Жданов Таганрог Ростов-на-Дону Ейск Должанка Приморско-Ахтарск Темрюк Тамань	26 34 30 27 30 30 31 29 24 28	84 85 86 87 88 89 90 91 92	Северодвинск Архангельск Мезень Канин Нос Индига Табседа Северный (о-в Колгуев) Нарьян-Мар Малые Кармангулы (Новая земля)	26 23 35 33 36 41 29 59
43	Каснийское море	20	93 94	Русская Гавань (Новая зем- ля) Рудольфа, о-в (Земля Фран- из Иосифа)	60 50
43 44 45 46 47 48 49 50 51 52 53	Ленкорань Баку Сумтаит Махачкала Каспийский Астрахань Гурьев Баутино (форт Шевченко) Кара-Богаз-Гол Красноводск	22 22 38 43 38 26 25 24 29 27 23	95 96 97 98 99 100 101 102 103	ца июсифа) Тихая, бухта (Земля Франца Иосифа) Амдерма Сеяха Новый порт Селехард Диксон Дудинка Стерлегова, мыс Русский, о-в	45 42 35 33 32 46 32 47 41

Продолжение табл. 127

I	2	3	1	2	(3
104		40	197		40
104	Правды, о-в	42	10/	Managan (Ewern Hansons)	37
105	Dизе, O-В	00	100	Магадан (Бухта Пагаева)	21
100	Малын Таимыр, о-в	31	109	Oxorek Dunou	28
107	Челюскин, мыс	00	140	Ади	36
100	Косистыи, мыс	30	141	АЯН	30
109	усть-Оленек	32	142	Чумикан Б. Шаумар о. р	1 37
	Тикси	40	143	D. Шантар, о-в Тирио	37
110	Амоарчик	30	144		1 22
112	Валькаркан	42	140	Пиколаевск-на-Амуре	21
110	liebek	80	140	Комсомольск-на-Амуре	50
114	Врангеля, о-в	52	147	Сюркум, мыс	09
110	Билингса, мыс	37	148	Золотои, мыс	44 50
	Шмидта, мыс	40	149	Сосуново	20
	Ванкарем	39	150	Пластун	30
110	Сердце-Камень	42	151	Дальнегорск, пристань	40
119	Уэлен	45	152	Ольга	30
	— "	1	153	Находка	43
	Тихий океан и его моря		154	Аскольд, о-в	52
100			155	Владивосток	3/
120	Провидения, бухта	41	156	Краскино (Посьет)	35
121	Креста, залив	50	157	Oxa	52
122	Анадырь	54	158	Ноглики	38
123	Угольная, бухта	41	159	Терпения, мыс	52
124	Наварин, мыс	49	160	Поронайск	31
125	Корф	36	161	Корсаков	35
126	Карагагинский, о-в	- 33	162	Крильон, мыс	52
127	Никольское (Командорские		163	Невельск	39
	острова)	43	164	Холмск	44
128	Усть-Камчатск	- 33	165	Углегорск	59
129	Петропавловск-Камчатский	47	166	Александровск-Сахалинский	35
130	Лопатка, мыс	51	167	Рыбновск	41
131	Усть-Большерецк	44	168	Южно-Курильск	41
132	Усть-Кайрюзово	38	169	Курильск	43
133	Чихчик	35	170	Симушир, о-в	49
134	Усть-Лесная	32	171	Матуа, о-в	47
135	Тайганос, мыс	54	172	Васильева, мыс	56
136	Гижига	47			
		1			

Рис. 162. Схемы раскрепления плавучих объектов цепями без подвесных грузов (длинные цепи) а-обыкновенная схема заякорения; б-перекрестная схема-заякорения при необходимости обеспечения глубины у кордона.

В расчетном отношении следует различать случаи одностороннего и двустороннего заякорения. При одностороннем заякорении условно предполагается, что внешние силы воспринимаются только передними якорными связями (расположенными со стороны направления действия внешних сил); при двустороннем заякорении внешние силы воспринимаются совместно передними и задними якорными связями.

При расчетах систем заякорения следует также рассматривать состояния:

первоначальное — при отсутствии внешних нагрузок;

рабочее — при действии внешних нагрузок на плавучий объект.

В приведенных ниже рекомендациях якорные цепи считаются тяжелыми нерастяжимыми нитями, провисающими по цепным линиям. Цепи по одному и тому же борту имеют одинаковые параметры заякорения. Положение анкерных опор стабилизированное.

Рис. 163. Схемы раскрепления плавучих объектов цепями с подвесными грузами а-обыкновенная схема заякорения (длиниме цепи); б-перекрестная схема заякорения при необходимости обеспечения глубины у кордона (короткие цепи).

А. Заякорение длинными цепями без подвесных грузов

При заякорении плавучих объектов с помощью длинных цепей без подвесных грузов расчеты могут производиться в предположении как одностороннего, так и двустороннего заякорений. Исходными данными для статического расчета являются (рис. 162):

*H*₁* — горизонтальная составляющая натяжения цепей в первоначальном состоянии (одинаковая для передних и задних цепей);

q, q — вес единицы длины, соответственно, передней и задней цепей в воде;

ζ, ζ — вертикальные проекции свободного провеса, соответственно, передней и задней цепей.

Одностороннее заякорение

В первоначальном состоянии расчеты передних цепей производятся по приводимым ниже формулам и в следующей последовательности:
нараметр цепной лини

$$a_1 = \frac{H_1^*}{q}; 260$$

горизонтальная проекция η_1 свободного провеса цепи

$$\operatorname{ch} \frac{\gamma_{11}}{a_1} = 1 + \frac{\zeta}{a_1};$$
 261

длина свободного провеса цепи (длина участка A_1B_1)

$$S_1 = a_1 \sin \frac{\eta_1}{a_1}; \qquad \qquad 262$$

величина полного натяжения T_1 цепи в цепной опоре (точнее, соединения цепи с сооружением)

$$T_1 = q \left(a_1 + \zeta \right). \tag{263}$$

В рабочем состоянии горизонтальная статическая нагрузка на якорь H₂* (она же горизонтальная составляющая натяжения цепи)

$$H_2^* = H_1^* + R_x, 264$$

где R_x — внешняя горизонтальная нагрузка, действующая на выделенный для расчета участок плавучего объекта. Величины a_2 , η_2 , S_2 , T_2 определяются по формулам 260—263, в которых индекс «1» заменяется индексом «2».

Величина горизонтального перемещения сооружения

$$x = (S_1 - \eta_1) - (S_2 - \eta_2).$$
 265

Двустороннее заякорение

В рабочем состоянии при несимметричной системе заякорения параметры *a*₂, *a*₂ цепных линий, соответственно, передней и задней цепей определяются из системы уравнений

$$\left.\begin{array}{l}
qa_2 - \overline{q}\,\overline{a_2} = R_x, \\
V\,\overline{a_2} + k\,V\,\overline{a_2} = \chi\,V\,\overline{a_2\overline{a_2}},
\end{array}\right\}$$
266

где

$$k = \frac{\zeta \, V \, \overline{\zeta}}{\overline{\zeta} \, V \, \overline{\overline{\zeta}}}, \qquad 267$$

$$\mu = \frac{\sqrt{a_1 + \kappa \sqrt{a_1}}}{\sqrt{a_1 \overline{a_1}}}.$$
 268

(Здесь и далее буквенные обозначения с чертой относятся к задней цепи).

Горизонтальные статические нагрузки на якоря

$$H_2^* = qa_2;$$
 269

$$\overline{II}_2^* = \overline{q}\,\overline{a}_2.$$

Элементы заякорения для передней η_2 , S_2 , T_2 и задней $\overline{\eta_2}$, $\overline{S_2}$, $\overline{T_2}$ цепей определяются по формулам 261—263 (с соответствующим изменением индекса). Горизонтальное перемещение *x* сооружения вычисляется по формуле 265, в которую подставляются величины элементов передней цепи.

При симметричной системе заякорения следует принимать

$$\overline{a_1} = a_1, \ \overline{S}_1 = S_1, \ \overline{\eta_1} = \eta_1, \ \overline{q} = q, \ \overline{\zeta} = \zeta.$$

Расчет системы заякорения длинными цепями без подвесных грузов приведен в примере 76.

При заякорении плавучих объектов с помощью длинных цепей с подвесными грузами расчеты допускается производить в предположении одностороннего заякорения. Исходными данными для статического расчета являются (рис. 164):

H₁* — горизонтальная составляющая натяжения цепи в первоначальном состоянии; G — вес в воде подвешенного к цепи груза;

q, q* — вес единицы длины цепи в воде (q — для верхнего участка цепи, выше груза, q^* — для нижнего участка цепи, ниже груза); S₀ — длина верхнего участка цепи (длина участка C₁A₁ от груза до клюза); ζ — вертикальная проекция свободного провеса цепи.

Рис. 164. Расчетная схема для длинной цепи с подвесным грузом

В первоначальном состоянии расчеты производятся по приведенным ниже формулам и в той же очередности.

Параметры цепных линий

$$a_1=\frac{H_1^*}{q};\qquad \qquad 272$$

$$a_1^* = \frac{H_1^*}{q^*}.$$
 273

Горизонтальная проекция ліс свободного провеса нижнего участка В₁С₁ цепи определяется из уравнения

$$1 + \frac{\zeta}{a_1^*} = \operatorname{ch} \frac{\eta_{1c}}{a_1^*} + \frac{q^*}{q} \left(\operatorname{ch} \frac{x_{1A}}{a_1} - \operatorname{ch} \frac{x_{1C}}{a_1} \right), \qquad 274$$

где координатные параметры x_{1A} , x_{1C} выражаются через η_{1c} формуламн

$$\frac{x_{1A}}{a_1} = \operatorname{Arsh}\left(\frac{S_0}{a_1} + \frac{G}{H_1^*} + \operatorname{sh}\frac{\eta_{1c}}{a_1^*}\right); \qquad 275$$

$$\frac{x_{1C}}{a_1} = \operatorname{Arsh}\left(\frac{G}{H_1^*} + \operatorname{sh}\frac{\eta_{1C}}{a_1^*}\right).$$
 276

Уравнение 274 включает в себя выражения 275, 276 и решается подбором. Корень его чис графически представляется как абсинсса точки пересечения прямой

$$f_1 = i_1 + \frac{\zeta}{a_1^*}$$
 277

с кривой

$$f_2 = \operatorname{ch} \frac{x_{1C}}{a_1^*} + \frac{q^*}{q} \left(\operatorname{ch} \frac{x_{1A}}{a_1} \to \operatorname{ch} \frac{x_{1C}}{a_1} \right).$$
 278

251

При подборе задаются величинами η_{1c} , а расчеты ведутся в табличной форме. После определения η_{1c} , а следовательно, и координатных параметров x_{1A} , x_{1C} расчеты ведутся в указанной ниже последовательности.

Длина свободного провеса цепи (длина участка $B_1C_1A_1$)

$$l_1 = S_0 + a_1^* \, \mathrm{sh} \, \frac{\gamma_{1c}}{a_1^*}.$$
 279

Горизонтальная проекция η_1 свободного провеса цепи

$$\eta_1 = \dot{\eta}_{1C} + (x_{1A} - x_{1C}). \qquad 280$$

Вертикальная проекция ζ_{1c} свободного провеса нижнего участка B_1C_1 цепи (возвышение точки цепи, в которой подвешен груз)

$$\zeta_{1c} = a_1^* \left(ch \, \frac{\eta_{1c}}{a_1^*} - 1 \right). \tag{281}$$

Полное натяжение пепи в цепной опоре (в точке A₁)

$$T_{1A} = H_1^* \operatorname{ch} \frac{x_{1A}}{a_1}.$$
 282

Вертикальная составляющая V_{1A} усилия в цепной опоре

$$V_{1A} = H_1^* \sinh \frac{x_{1A}}{a_1}.$$
 283

В рабочем состоянии горизонтальная статическая нагрузка на якорь H₂* определяется по формуле

$$H_2^* = H_1^* + R_x, \qquad 284$$

где R_x — внешняя горизонтальная нагрузка, деиствующая на выделенный для расчета участок сооружения. Далее, все расчеты в рабочем состоянии производятся по формулам 272—283, в которых индекс «1» заменяется индексом «2».

Горизонтальное перемещение сооружения

$$x = (l_1 - \eta_1) - (l_2 - \eta_2).$$
²⁸⁵

Если калибр цепи на верхнем и нижнем участках одинаков, то следует принимать $q^* = q$ $(a_1^* = a_1, a_2^* = a_2)$.

Расчет системы заякорения длинными цепями с подвесными грузами приведен в примере 77.

В. Заякорение короткими цепями без подвесных грузов

При заякорении плавучих объектов с помощью коротких цепей без подвесных грузов расчеты допускается производить в предположении одностороннего заякорения. Исходными данными для статического расчета являются (рис. 165): H_1^* — горизонтальная составляющая натяжения цепи в первоначальном состоянии; q — вес единицы длины цепи в воде; ζ — вертикальная проекция свободного провеса цепи; S — длина цепи (длина BA_1 от точки крепления к якорю до клюза).

В первоначальном состоянии расчеты производятся по приведенным ниже формулам и в той же очередности.

Параметр цепной линии

$$a_1 = \frac{H_1^*}{q}.$$
 286

Горизонтальная проекция свободного провеса цепи

$$\eta_1 = 2a_1 \operatorname{Arsh} \frac{\sqrt{S^2 - \zeta^2}}{2a_1}.$$
 287

Координатные параметры

$$x_{1B} = a \operatorname{Arth} \frac{\zeta}{S} - \frac{\eta_1}{2}, \qquad 288$$

$$x_{1A} = \eta_1 + x_{1B}.$$
 289

Полное натяжение цепи в цепной опоре (в точке A_i)

$$T_{1A} = H_1^* \operatorname{ch} \frac{x_{1A}}{a_1}$$
 290

Вертикальная составляющая усилия в цепной опоре

$$V_{1A} = H_1^* \sinh \frac{x_{1A}}{a_1}.$$
 291

Вертикальная составляющая усилия на якорь

$$V_{1B} = H_1^* \sinh \frac{x_{1B}}{a_1}.$$
 292

Рис. 165. Расчетная схема для короткой цепи без подвесного груза.

Имеется связь $V_{1A} = V_{1B} + qS$. Горизонтальная составляющая усилия на якорь равна H_1^* .

В рабочем состоянии горизонтальная статическая нагрузка на якорь H_2^* (она же горизонтальная составляющая усилия в цепи) определяется по формуле

$$H_2^* = H_1^* + R_x, 293$$

где R_x — внешняя горизонтальная напрузка, действующая на выделенный для расчета участок сооружения. Далее все расчеты в рабочем состоянии производятся по формулам 286—292, в которых индекс «1» заменяется индексом «2».

Горизонтальное перемещение сооружения

$$\mathbf{x} = \gamma_2 - \gamma_1. \tag{294}$$

Расчет системы заякорения короткими цепями без подвесных грузов приведен в примере 78.

Г. Заякорение короткими цепями с подвесными грузами

При заякорении плавучих объектов с помощью коротких цепей с подвесными грузами расчеты допускается производить в предположении одностороннего заякорения. Исходными данными для статического расчета являются (рис. 166): H_1^* — торизонтальная составляющая натяжения цепи в первоначальном состоянии; G — вес в воде подвешенного к цепи груза; q, q^* — вес единицы длины цепи в воде (q — для верхнего участка цепи выше груза, q^* — для нижнего участка цепи ниже груза); S_0 — длина верхнего участка цепи (длина участка C_1A_1 от груза до клюза); S^* — длина нижнего участка цепи (длина участка BC_1 от точки крепления к якорю до груза); ζ — вертикальная проекция свободного провеса цепи.

В первоначальном состоянии расчеты производятся по приведенным ниже формулам и в той же очередности.

....

Параметры цепных линий вычисляются по формулам

$$a_1 = \frac{II_1}{q};$$
 295
 $a_1^* = \frac{II_1^*}{q^*}.$ 296

Координатный параметр x^{*}1C определяется из уравнения

$$\frac{\zeta}{a_1} = \left(\operatorname{ch} \frac{x_{1A}}{a_1} - \operatorname{ch} \frac{x_{1C}}{a_1} \right) + \frac{q}{q^*} \left(\operatorname{ch} \frac{x_{1C}^*}{a_1^*} - \operatorname{ch} \frac{x_{1B}^*}{a_1^*} \right),$$
 297

где другие координатные параметры x_{1A} , x_{1C} , x^*_{1B} выражаются через x^*_{1C} формулами

$$\frac{x_{1A}}{a_1} = \operatorname{Arsh}\left(\frac{S_0}{a_1} + \frac{G}{H_1^*} + \operatorname{sh}\frac{x_{1C}^*}{a_1^*}\right);$$
298

$$\frac{x_{1C}}{a} = \operatorname{Arsh}\left(\frac{G}{H_1^*} + \operatorname{sh}\frac{x_{1C}^*}{a_1^*}\right);$$
299

$$\frac{x_{1B}^*}{a_1^*} = \operatorname{Arsh}\left(\operatorname{sh}\frac{x_{1C}^*}{a_1^*} - \frac{S^*}{a_1^*}\right).$$
300

Уравнение 297 включает в себя выражения 298—300 и решается подбором. Корень его x*₁₀ графически представляется как абсцисса точки пересечения прямой

$$f_1 = \frac{\zeta}{a_1} \tag{301}$$

с кривой

$$f_2 = \left(\operatorname{ch} \frac{x_{1A}}{a_1} - \operatorname{ch} \frac{x_{1C}}{a_1} \right) + \frac{q}{q^*} \left(\operatorname{ch} \frac{x_{1C}}{a_1^*} - \operatorname{ch} \frac{x_{1B}}{a_1^*} \right).$$
 302

При подборе задаются величинами x^*_{1C} , а расчеты ведутся в табличной форме. После определения x^*_{1C} , а следовательно, и x_{1A} , x_{1C} , x_{1B}^* , расчеты ведутся далее в указанной ниже последовательности. Горизонтальная проекция свободного провеса нижнего участка ВС1 цепи

$$\eta_{1C} = x_{1C}^* - x_{1B}^*. \tag{303}$$

Горизонтальная проекция свободного провеса всей цепи

$$\eta_1 = \eta_{1C} + (x_{1A} - x_{1C}). \qquad 304$$

Вертикальная проекция свободного провеса нижнего участка BC₁ цепи (возвышение точки цепи, в которой подвешен груз)

$$\zeta_{1C} = a_1^* \left(ch \frac{x_{1C}^*}{a_1^*} - ch \frac{x_{1B}^*}{a_1^*} \right).$$
 305

Полное натяжение цепи в цепной опоре (в точке A₁)

$$T_{1A} = H_1 \stackrel{\text{s.sh}}{=} \frac{x_{1A}}{a_1}.$$
 306

Вертикальная составляющая усилия в цепной опоре

$$V_{1A} = H_1^* \operatorname{ch} \frac{x_{1A}}{a_1}.$$
 307

Вертикальная составляющая усилия на якорь

$$V_{1B} = H_1^* \sinh \frac{x_{1B}^*}{a_1^*}$$
. 308

Горизонтальная составляющая усилия на якорь равна H_1^* .

В рабочем состоянии горизонтальная статическая нагрузка на якорь H₂* определяется по формуле

$$H_2^* = H_1^* + R_x, 309$$

где R_x — внешняя горизонтальная нагрузка, деиствующая на выделенный для расчета участок сооружения. Далее все расчеты в рабочем состоянии производятся по формулам 295—308, в которых индекс «1» заменяется индексом «2».

Горизонтальное перемещение сооружения

$$x = \eta_2 - \eta_1. \qquad 310$$

Если калибр цепи на верхнем и нижнем участках одинаков, следует принимать $q^* = q$, $(a_1^* = a_1, a_2^* = a_2)$.

Расчет системы заяжорения короткими цепями с подвесными грузами приведен в примере 79.

Д. Заякорение длинными цепями без подвесных грузов при наклонном дне

При заякорении плавучих объектов с помощью длинных цепей без подвесных грузов при наклонном дне расчеты допускается производить в предположении одностороннего заякорения. Исходными данными для статического расчета являются (рис. 167): H_1^* — горизонтальная составляющая натяжения цепи в первоначальном состоянии; q — вес единицы длины цепи в воде; ζ — разность отметок цепной опоры (точки A_1) и дна под ней в первоначальном состоянии; i — уклон дна, $i = tg \alpha$, α — угол наклона (при прямом уклоне дна значения i в расчетных формулах принимаются со знаком плюс, при обратном уклоне — со знаком минус).

В первоначальном состоянии расчеты производятся по приведенным ниже формулам и в той же очередности.

Параметр цепной линии

$$a_1 = \frac{H_1^*}{q}.$$
 311

Вспомогательные величины:

$$x_{1C} = a_1 \operatorname{Arsh} i; \qquad 312$$

255

$$k = \frac{\sqrt{1+t^2}}{t};$$
 313

$$S_{1C} = a_1 i; 314$$

$$b_1 = \zeta + a_1 (ki - 1) - ix_{1C};$$
 315

$$x_{1A} = \sqrt{S_{1C}^2 + 2a_1b_1} + S_{1C};$$
 316

$$K_{1C} = a_1 \left(ch \frac{x_{1A}}{a_1} - ki \right).$$
 317

a)

Рис. 167. Расчетные схемы для длинных цепей без подвесных грузов при прямом (a) и обратном (б) уклонах дна.

Горизонтальная проекция свободного провеса цепи

$$\eta_1 = x_{1A} - x_{1C}. \qquad 318$$

Длина участка цепи от цепной опоры до точки касания с грунтом (длина A_1C_1)

$$S_i = a_i \left(\operatorname{sh} \frac{x_{1A}}{a_1} - i \right).$$

Полное натяжение цепи в цепной опоре (в точке A₁)

$$T_{1A} = H_1^* \operatorname{ch} \frac{x_{1A}}{a_1}.$$
 320

Вертикальная составляющая усилия в цепной опоре

$$V_{1A} = H_1^* \sin \frac{x_{1A}}{a_1}$$
. 321

Вертикальная составляющая усилия на якорь

$$V_{1B} = H_1 * i. 322$$

Горизонтальная составляющая усилия на якорь равна H₁*.

В рабочем состоянии горизонтальная статическая нагрузка на якорь (она же горизонтальная составляющая усилия в цепи)

$$H_2^* = H_1^* + R_x, \qquad 323$$

где R_x — внешняя горизонтальная нагрузка, действующая на выделенный для расчета участок сооружения.

Параметр цепной линии

$$a_2 = \frac{H_2^*}{q}$$
. 324

Вспомогательные величины

$$d = a_2 (ki - 1);$$
 325

$$l = S_1 - k (\zeta_{1C} + d) + a_2 i; 326$$

$$m = i^{2} (a_{2} - kl);$$
 327

Вертикальная проекция ζ_{2A} цепной линии

$$\zeta_{2A} = m \pm \sqrt{m^2 - n}.$$
 329

При прямом уклоне дна в формуле 329 перед радикалом принимается знак плюс, в случае обратного уклона дна — минус.

Координатный параметр

$$x_{2A} = a_2 \operatorname{Arch}\left(\frac{\zeta_{2A}}{a_2} + 1\right).$$
 330

Все расчеты производятся далее по формулам 312, 318—322, в которых индекс «1» заменяется индексом «2».

Горизонтальное перемещение сооружения

$$x = (\gamma_{12} - \gamma_{11}) - \frac{1}{kl} (S_2 - S_1).$$
 331

Расчет при данной расчетной схеме приведен в примере 80.

Е. Заякорение у обрывистого берега

При заякорении плавучих объектов у обрывистого берега расчеты допускается производить в предположении одностороннего заякорения. Исходными данными для статического расчета являются (рис. 168): H_1^* — горизонтальная составляющая натяжения цепи в первоначальном состоянии; q — вес единицы длины цепи в воде; ζ — разность отметок клюза и якоря; S — длина цепи (длина BA_1 от точки крепления к якорю до клюза).

В первоначальном состоянии расчеты производятся по приведенным ниже формулам и в той же очередности.

Параметр цепной линии

$$a_1 = \frac{H_1^*}{q}.$$
 332

Горизонтальная проекция свободного провеса цепи

$$\eta_1 = a_1 \operatorname{Arch}\left(1 - \frac{S^2 + \zeta^2}{2a_1^2}\right).$$
 333

Координатные параметры

$$x_{1A} = \frac{\eta_1}{2} - a_1 \operatorname{Arch} \frac{S}{2a_1 \operatorname{sh} \frac{\eta_1}{2a_1}},$$
 334

$$x_{1B} = \eta_1 - x_{1A}.$$
 335

Вертикальные проекции свободного провеса участков A_1C_1 и BC_1 цепи

$$\zeta_{1A} = a_1 \left(\operatorname{ch} \frac{x_{1A}}{a_1} - 1 \right),$$
 336

$$\zeta_{1B} = \zeta_{1A} + \zeta. \tag{337}$$

Полное натяжение в цепной опоре (в точке A_1)

$$T_{1A} = H_1^* + q\zeta_{1A}.$$
 338

Полное натяжение в якорной опоре (в точке В)

$$T_{1B} = H_1' + q\zeta_{1B}.$$
 339

Вертикальная составляющая усилия в цепной опоре

$$V_{1A} = H_1^* \sinh \frac{x_{1A}}{a_1}.$$
 340

Вертикальная составляющая усилия на якорь

$$V_{1B} = H_1^* \sinh \frac{x_{1B}}{a_1}.$$
 341

Горизонтальная составляющая усилия на якорь равна H₁*.

В рабочем состоянии горизонтальная статическая нагрузка на якорь H_2^* (она же горизонтальная составляющая усилия в цепи)

$$H_2^* = H_1^* + R_x, \qquad 342$$

где R_x — внешняя горизонтальная нагрузка, действующая на выделенный для расчета участок сооружения. Все расчеты в рабочем состоянии производятся далее по формулам 332—341, в которых индекс «1» заменяется индексом «2».

Горизонтальное перемещение сооружения

$$=\eta_2-\eta_1.$$

343

Расчет при данной расчетной схеме приведен в примере 81.

x

Ж. Учет изменения горизонтов воды

При заякорении плавучих объектов с помощью длинных цепей учет изменения горизонтов воды производится путем пересчета величины горизонтальной составляющей натяжения цепей в первоначальном состоя-

нии. Исходными данными для пересчета в случае несимметричной системы заякорения являются (рис. 169, *a*): H_0^* — горизонтальная составляющая натяжения цепей до изменения горизонта воды; *q*, \overline{q} — вес единицы длины, соответственно, передней и задней цепей в воде: ζ_0 , ζ_0 — вертикальные проекции свободного провеса, соответственно, передней и задней цепей до изменения горизонта воды; ζ , $\overline{\zeta}$ — вертикальные проекции свободного провеса, соответственно, передней и задней цепей до изменения горизонта воды; ζ , $\overline{\zeta}$ — вертикальные проекции свободного провеса, соответственно, передней и задней цепей после изменения горизонта воды.

Рис. 169. Расчетные схемы к учету изменения горизонтов воды.

Расчеты производятся по приведенным ниже формулам и в той же очередности.

Параметры цепных линий до изменения горизонта воды определяются по формулам

$$a_0 = \frac{H_0^*}{q}; \qquad \qquad 344$$

$$\overline{a_0} = \frac{H_0^*}{\overline{q}}.$$
 345

Вспомогательные величины

$$\delta = \frac{q}{\bar{q}}; \qquad 346$$

$$n = \sqrt{\left(\frac{\zeta}{\overline{\zeta}}\right)^3};$$
 347

$$\chi = \frac{\zeta_0 \sqrt{\zeta_0 \overline{a_0}} + \overline{\zeta_0} \sqrt{\overline{\zeta_0 a_0}}}{\overline{\xi} \sqrt{\zeta_a \overline{a_0}}}.$$
348

259

Горизонтальная составляющая натяжения цепей в первоначальном состоянии после изменения горизонта воды

$$H_1^* = q \left(\frac{1+n\sqrt{\delta}}{\chi\sqrt{\delta}}\right)^2.$$
 349

При симметричной системе заякорения (рис. 169, б) имеем:

$$q=\overline{q};$$
 $\zeta=\overline{\zeta_0};$ $\zeta=\overline{\zeta}.$

Горизонтальная составляющая натяжения цепей H_1^* в этом случае определяется по формуле

$$H_1^* = H_0^* \left(\frac{\zeta}{\zeta_0}\right)^3.$$
 350

Расчеты с учетом изменения горизонта воды приведены в примерах 82 и 83.

Пример 76. Произвести статические расчеты симметричной системы заякорения с длинными цепями без подвесных грузов (рис. 162) в предположении одностороннего и двустороннего заякорений при исходных данных: горизонтальная составляющая натяжения цепей в первоначальном состоянии, $H_1^* = 10,00$ тс; внешняя горизонтальная нагрузка, приходящаяся на переднюю и заднюю цепи, $R_x = 25,00$ тс; вертикальная проекция свободного провеса цепей, $\zeta = \overline{\zeta} = 14,40$ м; калибр цепей 43, ГОСТ 6345—65 (цепи литые с распорками; пробная нагрузка 73,4 тс; разрывная нагрузка 102,8 тс), вес 1 м длины цепи в воде $q = \overline{q} = 0,034$ тс/м.

1. Одностороннее заякорение

В первоначальном состоянии (внешняя нагрузка R_x отсутствует) параметр целной линии по формуле 260

$$a_1 = \frac{10,00}{0,034} = 294,117$$
 м.

Горизонтальная проекция η_1 свободного провеса цепи определяется по уравнению 261 при $a_1 = 294,117$ м и $\zeta = 14,40$ м, ch $\frac{\eta_1}{294,117} = 1 + \frac{14,40}{294,117}$, откуда $\eta_1 = 91,67$ м.

Длина свободного провеса цепи (длина участка A₁B₁, рис. 162) по формуле 262

$$S_1 = 294,117 \text{ sh} \frac{91,67}{294,117} = 93,16$$
м.

Величина полного натяжения цепи в цепной опоре по формуле 263 $T_1 = 0.034 (294,117 + 14,40) = 10,49$ тс.

В рабочем состоянии (действует внешняя нагрузка R_x) горизонтальная составляющая натяжения цепи по формуле 264

$$H_2^* = 10,00 + 25,00 = 35,00$$
 тс

По формулам 260—263, в которых индекс «1» заменен индексом «2», параметр цепной линии

$$a_2 = \frac{35,00}{0,034} = 1029,41$$
 M;

горизонтальная проекция свободного провеса цепи

$$\eta_2 = 171,90$$
 M;

длина свободного провеса цепи

$$S_2 = 1029,41 \text{ sh} \frac{171,90}{1029,41} = 172,70 \text{ м};$$

величина полного натяжения цепи в цепной опоре $T_2 = 0,034 (1029,41 + 14,40) = 35,49$ тс.

Горизонтальное перемещение сооружения по формуле 265 *x* = (93,16 - 91,67) - (172,70 - 171,90) = 0,69 м.

2. Двустороннее заякорение

В рабочем состоянии параметры a_2 и $\overline{a_2}$ цепных линий передней и задней цепей определяются из системы уравнений 266, которая при симметричной схеме заякорения приводится к виду

$$qa_2 - \overline{q} \ \overline{a_2} = R_x,$$

$$V \ \overline{a_2} + V \ \overline{\overline{a_2}} = \frac{2}{\sqrt{\overline{a_1}}} V \ \overline{a_2 \overline{a_2}},$$

где $q = \overline{q} = 0,034$ тс/м; $R_x = 25,00$ тс; $a_1 = 294,117$ м.

Решая эти уравнения, получаем

$$a_2 = 880,72 \text{ M}, \quad \overline{a_2} = 145,43 \text{ M}.$$

По формулам 269 и 270 горизонтальные нагрузки равны: на якорь передней цепи

$$H_2^* = 0,034 \cdot 880,72 = 29,94$$
 rc,

на якорь задней цепи

$$\overline{H}_{2}^{*} = 0,034 \cdot 145,43 = 4,94$$
 rc.

По формулам 261—263, в которых индекс «1» заменен индексом «2», элементы заякорения для передней η_2 , S_2 , T_2 и задней $\overline{\eta}_2$, \overline{S}_2 , \overline{T}_2 цепей равны:

горизонтальная проекция свободного провеса передней цепи

$$\eta_2 = 159,04$$
 м,

длина свободного провеса передней цепи

$$S_2 = 880,72 \text{ sh} \frac{159,04}{880,72} = 159,90 \, \text{ м},$$

величина полного натяжения передней цепи

 $T_2 = 0,034 (880,72 + 14,40) = 30,43 \text{ tc},$

горизонтальная проекция свободного провеса задней цепи

$$\overline{\eta_2} = 64,20$$
 м,

длина свободного провеса задней цепи

$$\overline{S}_2 = 145,43 \text{ sh} \frac{64,20}{145,43} = 66,31 \text{ M},$$

величина полного натяжения задней цепи

$$\overline{T}_2 = 0,034 (145,43 + 14,40) = 5,43$$
 rc.

По формуле 265, в которую подставляем величины элементов для передней цепи, горизонтальное перемещение сооружения

$$x = (93,16 - 91,67) - (159,90 - 159,04) = 0,63$$
 M.

Пример 77. Произвести статический расчет системы заякорения с длинными цепями и подвесными грузами в предположении одностороннего заякорения при исходных данных (рис. 164): горизонтальная составляющая натяжения цепи в первоначальном состоянии, $H_1^*=10,00$ тс; внешняя горизонтальная нагрузка, приходящаяся на одну цепь, $R_x = 25,00$ тс; вес в воде подвешенного к цепи груза, G = 20,00 тс, длина верхнего участка цепи, $S_0 = 12,50$ м; вертикальная проекция свободного провеса цепи, $\zeta = 19,40$ м; калибр цепей 43, ГОСТ 6345-65 (цепи литые с распорками; пробная нагрузка 73,4 тс; разрывная нагрузка 102,8 тс), вес 1 м длины цепи в воде $q = q^* = 0,034$ тс/м.

В первоначальном состоянии (внешняя нагрузка R_x отсутствует) параметр цепной линии по формуле 272

$$a_1 = \frac{10,00}{0,034} = 294,117$$
 м.

Так как $q = q^*$, то $a_1 = a_1^*$.

Горизонтальная проекция η₁₀ свободного провеса нижнего участка цепи определяется из уравнения 274 подбором с использованием соотношений 275 и 276. При этом получено:

$$\eta_{1C} = 68,30$$
 M,

координатные параметры

$$x_{1A} = 459,13$$
 m; $x_{1C} = 454,05$ m.

Длина l_1 свободного провеса цепи по формуле 279

$$l_1 = 12,50 + 294,117 \text{ sh} \frac{68,30}{294,117} = 81,42 \text{ м}.$$

Горизонтальная проекция свободного провеса цепи (по формуле 280) и вертикальная проекция свободного провеса нижнего участка цепи (по формуле 281) соответственно равны:

$$\begin{split} \eta_1 &= 68,30 + (459,13 - 454,05) = 73,38 \text{ m}; \\ \zeta_{1C} &= 294,117 \left(\mathrm{ch} \, \frac{68,30}{294,117} - 1 \right) = 7,96 \text{ m}. \end{split}$$

По формуле 282 полное натяжение цепи в цепной опоре

$$T_{1A} = 10,00 \text{ ch} \frac{459,13}{294,117} = 24,87 \text{ rc};$$

По формуле 283 вертикальная составляющая усилия в цепной опоре

$$V_{1A} = 10,00 \text{ sh} \frac{459,13}{294,117} = 22,77 \text{ rc.}$$

В рабочем состоянии (действует внешняя нагрузка R_x) расчеты произведены по формулам 272—283, в которых индекс «1» заменен индексом «2».

По формуле 284 горизонтальная нагрузка на якорь

$$H_2^* = 10,00 + 25,00 = 35,00$$
 rc.

По формуле 272 параметр цепной линии

$$a_2 = \frac{35,00}{0,034} = 1029,41$$
 m,

а так как $q = q^*$, то $a_2 = a_2^*$.

Из уравнения 274 с учетом зависимостей 275 и 276 найденная подбором горизонтальная проекция свободного провеса нижнего участка цепи

координатные параметры:

$$x_{2A} = 702,357$$
 M; $x_{2C} = 692,258$ M.

По формуле 279 длина свободного провеса цепи

$$l_2 = 12,50 + 1029,41$$
 sh $\frac{157,40}{1029,41} = 170,51$ Mg

По формуле 280 горизонтальная проекция свободного провеса цепи $\eta_2 = 157,40 + (702,36 - 692,26) = 167,50$ м.

По формуле 281 вертикальная проекция свободного провеса нижнего участка цепи

$$\ensuremath{\zeta_{2C}}\xspace = 1029,41 \left({\rm ch} \, \frac{157,40}{1029,41} - 1 \right) = 12,05\,$$
 м.

По формуле 282 полное натяжение цепи в цепной опоре

$$T_{2A} = 35,00 \text{ ch} \frac{702,357}{1029,41} = 43,47 \text{ tc.}$$

По формуле 283 вертикальная составляющая усилия в цепной опоре

$$V_{2A} = 35,00 \text{ sh} \frac{702,357}{1029,41} = 25,78 \text{ tc.}$$

По формуле 285 горизонтальное перемещение сооружения

x = (81,42 - 73,38) - (170,51 - 167,50) = 5,03 M.

Пример 78. Произвести статический расчет системы заякорения с короткими цепями без подвесных грузов в предположении одностороннего заякорения при исходных данных (рис. 165): горизонтальная составляющая натяжения цепи в первоначальном состоянии $H_1^*=10,00$ тс; внешняя горизонтальная нагрузка, приходящаяся на одну цепь, $R_x=25,00$ тс; вертикальная проекция свободного провеса цепи $\zeta=14,40$ м; общая длина цепи S=77,0 м; калибр цепей 43, ГОСТ 6345—65 (цепи литые с распорками; пробная нагрузка 73,4 тс; разрывная нагрузка 102,8 тс), вес 1 м длины цепи в воде q=0,034 тс/м.

В первоначальном состоянии параметр *a*₁ цепной линии (по формуле 286)

$$a_1 = \frac{10,00}{0,034} = 294,117$$
 м.

По формуле 287 горизонтальная проекция свободного провеса цепи

$$\eta_1 = 2.294,117$$
 Arsh $\frac{\sqrt{77,0^2 - 14,40^2}}{2.294,117} = 75,47$ м.

По формулам 288, 289 координатные параметры

$$x_{1B} = 294,117 \operatorname{Arth} \frac{14,40}{77,00} - \frac{75,47}{2} = 17,86 \operatorname{M},$$

 $x_{1A} = 75,47 + 17,86 = 93,33 \operatorname{M}.$

По формуле 290 подное натяжение цепи в цепной опоре

$$T_{1A} = 10,00 \text{ ch} \frac{93,33}{294,117} = 10,51 \text{ tc.}$$

По формулам 291 и 292 вертикальные составляющие усилия в цепной опоре и на якорь соответственно равны:

$$V_{1A} = 10,00 \text{ sh} \frac{93,33}{294,117} = 3,23 \text{ rc};$$

 $V_{1B} = 10,00 \text{ sh} \frac{17,86}{294,117} = 0,61 \text{ rc}.$

Проверяем удовлетворение условия $V_{1A} = V_{1B} + qS = 0,61 + 0,034 \cdot 77,00 = 3,23$ тс. т. е. условие выполняется.

В рабочем состоянии горизонтальная нагрузка на якорь (по формуле 293)

$$H_2^* = 10,00 + 25,00 = 35,00 \text{ tc}$$

По формулам 286—289, в которых индекс «1» заменен индексом «2», находим геометрические характеристики:

параметр цепной линии

$$a_2 = \frac{35,00}{0,034} = 1029,41$$
 m;

горизонтальная проекция свободного провеса цепи

$$\eta_2 = 2 \cdot 1029,41$$
 Arsh $\frac{\sqrt{77,00^2 - 14,40^2}}{2 \cdot 1029,41} = 75,62$ м;

координатные параметры х2В и х2А

$$x_{2B} = 1029,41 \operatorname{Arth} \frac{14,40}{77,00} - \frac{75,62}{2} = 157,00 \text{ m};$$

$$x_{2A} = 75,62 + 157,00 = 232,62$$
 M.

По формуле 290 полное натяжение цепи в цепной опоре

$$T_{2A} = 35,00 \text{ ch} \frac{232,62}{1029,41} = 35,90 \text{ rc}.$$

По формулам 291 и 292 вертикальные составляющие усилий в цепной опоре и на якорь соответственно равны:

$$\begin{split} V_{2A} &= 35,00 \text{ sh} \, \frac{232,62}{1029,41} = 7,98 \text{ rc}, \\ V_{2B} &= 35,00 \text{ sh} \, \frac{157,00}{1029,41} = 5,36 \text{ rc}. \end{split}$$

Условие $V_{2B} + qS = 5,36 + 0,034 \cdot 77,00 = 7,98$ тс = V_{2A} выполняется. По формуле 294

$$x = 75,62 - 75,47 = 0,15$$
 м.

Пример 79. Произвести статический расчет системы заякорения с короткими цепями и подвесными грузами в предположении одностороннего заякорения при исходных данных (рис. 166): горизонтальная составляющая натяжения цепи в первоначальном состоянии $H_1^* = 10,00$ тс; внешняя горизонтальная нагрузка, приходящаяся на одну цепь, $R_x = 25,00$ тс; вес в воде подвешенного к цепи груза G = 20,00 тс; длина верхнето участка цепи от груза до клюза, $S_0 = 12,50$ м; длина участка цепи от якоря до груза $S^* = 50,00$ м; вертикальная проекция свободного провеса цепи $\zeta =$ 19,40 м; калибр цепей 43, ГОСТ 6345—65 (цепи литые с распорками; пробная нагрузка 73,4 тс; разрывная нагрузка 102,8 тс), вес 1 м длины цепи в воде q = 0,034 тс/м.

В первоначальном состоянии параметр *a*₁ цепной линии (по формуле 295)

$$a_1 = \frac{10,00}{0,034} = 294,117$$
 м.

Так как $q^* = q$, $a_1 = a_1^*$.

Из уравнения 297 с использованием соотношений 298—300 подбором находим:

$$x_{1C}^* = 71,80$$
 M,
 $x_{1A} = 460,558$ M, $x_{1C} = 455,511$ M, $x_{1B}^* = 22,494$ M.

Горизонтальные проекции свободного провеса нижнего участка и всей цепи определяем по формулам 303 и 304:

$$\eta_{1C} = 71,80 - 22,49 = 49,31$$
 м,
 $\eta_1 = 49,31 + (460,56 - 455,51) = 54,36$ м

Вертикальная проекция ζ_{1с} свободного провеса нижнего участка цепи (по формуле 305)

$$\zeta_{1C} = 294,117 \left(\operatorname{ch} \frac{71,80}{294,117} - \operatorname{ch} \frac{22,494}{294,117} \right) = 8,02 \text{ M}.$$

Полное натяжение цепи в цепной опоре (по формуле 306)

$$T_{1A} = 10,00 \text{ ch} \frac{460,558}{294,117} = 24,98 \text{ tc.}$$

Вертикальные составляющие усилий в цепной опоре (по формуле 307) и на якорь (по формуле 308) равны:

$$V_{1A} = 10,00 \text{ sh } \frac{460,558}{294,117} = 22,89 \text{ rc},$$

 $V_{1B} = 10,00 \text{ sh } \frac{22,491}{294,117} \doteq 0,77 \text{ rc}.$

Горизонтальная составляющая усилия на якорь $H_1^* = 10,00$ тс.

В рабочем состоянии горизонтальная нагрузка на якорь (по формуле 309)

$$H_2^* = 10,00 + 25,00 = 35,00$$
 тс.

По формуле 295 параметр цепной линии

$$a_2 = \frac{35,00}{0,034} = 1029,41$$
 м, а так как $q = q^*$, $a_2 = a_2^*$.

По формулам 297-300 координатные параметры

$$x_{2C}^* = 262,85$$
 м; $x_{2A} = 787,394$ м; $x_{2C} = 777,803$ м; $x_{2B}^* = 214,174$ м.

По формулам 303—304 горизонтальные проекции свободного провеса нижнего участка и всей цепи

$$\eta_{2C} = 262,85 - 214,17 - 48,68$$
 м,

 $\eta_2 = 48,68 + (787,39 - 777,80) = 58,27$ м.

По формуле 305 вертикальная проекция свободного провеса нижнего участка цепи

$$\zeta_{2C} = 1029,41 \left(\operatorname{ch} \frac{262,85}{1029,41} - \operatorname{ch} \frac{214,174}{1029,41} \right) = 11,39 \text{ M}.$$

Полное натяжение цепи в цепной опоре (по формуле 306)

$$T_{2A} = 35,00 \text{ ch} \frac{787,394}{1029,41} = 45,75 \text{ tc}$$

Вертикальная составляющая усилия в цепной опоре по формуле 307

$$V_{2A} = 35,00 \text{ sh} \frac{787,394}{1029,41} = 29,46 \text{ rc.}$$

Вертикальная составляющая усилия на якорь по формуле 308

$$V_{2B} = 35,00 \text{ sh} \frac{214,174}{1029,41} = 7,32 \text{ rc.}$$

Горизонтальная составляющая усилия на якорь $H_2^* = 35,00$ гс. По формуле 310 горизонтальное перемещение сооружения

$$x = 58,27 - 54,36 = 3,91$$
 м.

Пример 80. Произвести статический расчет систем заякорения с длинными цепями без подвесных грузов при наклонном дне (случаи прямого и обратного уклонов) в предположении одностороннего заякорения при исходных данных (рис. 167): горизонтальная составляющая натяжения цепи в первоначальном состоянии $H_1^* = 5,00$ тс; внешняя горизонтальная нагрузка, приходящаяся на одну цепь $R_x = 45,00$ тс; разность отметок цепной опоры и дна под ней в первоначальном состоянии $\zeta = 10,00$ м; уклоны дна $i = \pm 0,1$; калибр цепей 77, ГОСТ 6345—65 (цепи литые с распорками; пробная нагрузка 210,0 тс; разрывная нагрузка 294,0 тс), вес 1 м длины цепи в воде q = 0,111 тс/м.

1. Прямой уклон дна

В первоначальном состоянии (внешняя нагрузка R_x отсутствует) параметр цепной линии по формуле 311

$$a_1 = \frac{5,00}{0,111} = 45,045$$
 M.

Вспомогательные величины вычисляем по формулам 312-317:

$$\begin{split} x_{1C} &= 45,045 \text{ Arsh } 0,1 = 4,50 \text{ m}; \\ k &= \frac{\sqrt{1+0,1^2}}{0,1} = 10,05 \text{ m}; \\ S_{1C} &= 45,045 \cdot 0,1 = 4,51 \text{ m}; \\ b_1 &= 10,00 + 45,045 (10,05 \cdot 0,1 - 1) - 0,1 \cdot 4,50 = 9,78 \text{ m}; \\ x_{1A} &= \sqrt{4,51^2 + 2 \cdot 45,045 \cdot 9,78} + 4,51 = 34,52 \text{ m}; \\ \zeta_{1C} &= 45,045 \left(\text{ch} \frac{34,52}{45,045} - 10,05 \cdot 0,1 \right) = 13,65 \text{ m}. \end{split}$$

По формуле 318 горизонтальная проекция свободного провеса цепи $\eta_1 = 34,52-4,50 = 30,02$ м.

Длина участка цепи от цепной опоры до точки касания с грунтом по формуле 319

$$S_1 = 45,045 \left(\operatorname{sh} \frac{34,52}{45,045} - 0,1 \right) = 33,49 \text{ M}.$$

По формуле 320 полное натяжение цепи в цепной опоре

$$T_{1A} = 5,00 \text{ ch} \frac{34,52}{45,045} = 6,54 \text{ rc.}$$

Вертикальная составляющая усилия в цепной опоре по формуле 321

$$V_{1A} = 5,00 \text{ sh} \frac{34,52}{45,045} = 4,22 \text{ rc.}$$

Вертикальная составляющая усилия на якорь по формуле 322

$$V_{1B} = 5,00 \cdot 0,1 = 0,50$$
 rc.

В рабочем состоянии (действует внешняя нагрузка R_x) горизонтальная составляющая натяжения цепи по формуле 323

$$H_2^* = 5,00 + 45,00 = 50,00$$
 rc.

Параметр цепной линии по формуле 324

$$a_2 = \frac{50,00}{0,111} = 450,450$$
 M.

Вспомогательные величины по формулам 325-328 равны:

 $d = 450,450 (10,05 \cdot 0,1 - 1) = 2,25 \text{ m};$ $l = 33,49 - 10,05 (13,65 + 2,25) + 450,45 \cdot 0,1 = -81,39 \text{ m};$ $m = 0,1^2 (450,450 + 10,05 \cdot 81,39) = 12,68 \text{ m};$ $n = (-0,1 \cdot 81,39)^2 = 66,24 \text{ m}.$ Вертикальная проекция цепной линии по формуле 329

$$\zeta_{24} = 12.68 + \sqrt{12.68^2 - 66.24} = 22.41$$
 M.

Координатный параметр по формуле 330

$$x_{2A} = 450,450 \operatorname{Arch}\left(\frac{22,41}{450,450} + 1\right) = 141,52 \text{ M}.$$

По формулам 312, 318—322, в которых индекс «1» заменен индексом «2», определяем:

координатный параметр

$$x_{2C} = 450,450$$
 Arsh 0,1 = 44,97 м,

горизонтальная проекция свободного провеса цепи

$$\eta_2 = 141,52 - 44,97 = 96,55$$
 м,

длина участка цепи от цепной опоры до точки касания с грунтом

$$S_2 = 450,450 \left(\operatorname{sh} \frac{141,52}{450,450} - 0,1 \right) = 98,81 \text{ M},$$

полное натяжение цепи в цепной опоре

$$T_{2A} = 50,00 \text{ ch} \frac{141,52}{450,450} = 52,49 \text{ tc},$$

вертикальная проекция усилия в цепной опоре

$$V_{2A} = 50,00 \text{ sh} \frac{141,52}{450,450} = 15,97 \text{ tc},$$

вертикальная составляющая усилия на якорь

$$V_{2R} = 50,00 \cdot 0,1 = 5,00$$
 rc.

Горизонтальное перемещение сооружения по формуле 331

$$x = (96,55 - 30,02) - \frac{1}{10,05 \cdot 0,1} (98,81 - 33,49) = 1,52 \text{ m}.$$

2. Обратный уклон дна

В первоначальном состоянии (внешняя нагрузка R_x отсутствует) параметр цельной линнии по формуле 311

$$a_1 = \frac{5,00}{0,111} = 45,045$$
 м.

Вспомогательные величины по формулам 312—317 равны:

$$x_{1C} = -4,50$$
 M; $k = -10,05$; $S_{1C} = -4,51$ M;

$$b_1 = 9,78$$
 m; $x_{1A} = 25,52$ m; $\zeta_{1C} = 7,19$ m.

Горизонтальная проекция свободного провеса цепи по формуле 318 $\eta_1 = 25,52 + 4,50 = 30,02$ м.

Длина участка цепи от цепиюй опоры до точки касания с прунтом по формуле 319

$$S_1 = 45,045 \left(sh \frac{25,52}{45,045} + 0,1 \right) = 31,40 \text{ m}.$$

Полное натяжение цепи в цепной опоре по формуле 320

$$T_{1A} = 5,00 \text{ ch} \frac{25,52}{45,045} = 5,83 \text{ rc.}$$

Вертикальная составляющая усилия в цепной опоре по формуле 321

$$V_{1A} = 5,00 \text{ sh} \frac{25,52}{45,045} = 3,00 \text{ rc.}$$

Вертикалыная составляющая усилия на якорь по формуле 322 $V_{1B} = 5,00 \ (-0,1) = -0,50 \ \text{тс.}$

В рабочем состоянии (действует внешняя нагрузка R_x) горизонтальная составляющая матяжения цепи по формуле 323

$$H_2^* = 5,00 + 45,00 = 50,00$$
 ro

Параметр цепной линии по формуле 324

$$a_2 = \frac{50,00}{0.111} = 450,450$$
 м.

По формулам 325—328 вспомогательные величины равны:

$$d = 2,25$$
 m; $l = 81,25$ m; $m = 12,68$ m; $n = 66,01$ m

Вертикальная проекция цепной линии по формуле 329

$$\zeta_{2A} = 12,68 - \sqrt{12,68^2 - 66,01} = 2,95$$
 м.

Координатный параметр по формуле 330

$$x_{2A} = 450,450 \operatorname{Arch}\left(\frac{2,95}{450,450} + 1\right) = 51,49 \text{ M}.$$

По формулам 312, 318—322, в которых индекс «1» заменен индексом «2», находим:

$$x_{2C} = -44,97$$
 м; $\eta_2 = 96,46$ м; $S_2 = 96,66$ м; $T_{2A} = 50,33$ тс; $V_{2A} = 5,73$ тс; $V_{2B} = -5,00$ тс.

Горизонтальное перемещение сооружения определяем по формуле 331

$$x = (96,46 - 30,02) - \frac{1}{(-10,05)(-0,1)}(96,66 - 31,40) = 1,50$$
 M.

Пример 81. Произвести статический расчет системы заякорения у обрывистого берега цепями без подвесных грузов в предположении одностороннего заякорения при исходных данных (рис. 168): горизонтальная составляющая натяжения цепи в первоначальном состоянии $H_1^* =$ =10,00 тс; внешняя горизонтальная нагрузка, приходящаяся на одну цепь, $R_x = 20,00$ тс; длина цепи от якоря до клюза S = 70,00 м; разность вертикальных отметок якоря и клюза $\zeta = 2,00$ м; калибр цепей 77, ГОСТ 6345—65 (цепи литые с распорками; пробная нагрузка 210,0 тс; разрывная нагрузка 294,0 тс), вес 1 м длины цепи в воде q = 0,111 тс/м.

В первоначальном состоянии (внешняя нагрузка R_x отсутствует) параметр цепной линии по формуле 332

$$a_1 \doteq \frac{10,00}{0,111} = 90,090$$
 м.

Горизонтальная проекция свободного провеса цепи по формуле 333

$$\eta_1 = 90,090 \operatorname{Arch}\left(1 + \frac{70,00^2 - 2,00^2}{2 \cdot 90,090^2}\right) = 68,92 \text{ M}.$$

При необходимости могут вычисляться и другие величины, характеризующие цепь в первоначальном состоянии.

В рабочем состоянии (действует внешнияя нагрузка R_x) горизонтальная составляющая натяжения цепи по формуле 342

$$H_2^* = 10,00 + 20,00 = 30,00$$
 rc.

По формулам 332—338, в которых индекс «1» заменен индексом «2», имеем:

параметр цепной линии

$$a_2 = \frac{30,00}{0,111} = 270,270$$
 M;

горизонтальная проекция свободного провеса цепи

$$\eta_2 = 270,270 \operatorname{Arch}\left(1 + \frac{70,00^2 - 2,00^2}{2 \cdot 270,270^2}\right) = 69,73 \text{ m};$$

координатные параметры

$$x_{2A} = \frac{69,73}{2} - 270,270 \text{ Arch } \frac{70,0}{2 \cdot 270,270 \text{ sh} \frac{69,73}{2 \cdot 270,270}} = 24,73 \text{ m};$$

 $x_{2B} = 69,73 - 24,73 = 45,00$ м;

вертикальные проекции свободного провеса участков цепи

$$\begin{aligned} \zeta_{2A} &= 270,270 \left(\operatorname{ch} \frac{24,73}{270,270} - 1 \right) = 1,135 \text{ m}; \\ \zeta_{2B} &= 1,135 + 2,00 = 3,135 \text{ m}. \end{aligned}$$

Полное натяжение в цепной опоре по формуле 338 $T_{2A} = 30,00 + 0,111 \cdot 1,135 = 30,13$ тс.

Полное натяжение в якорной опоре по формуле 339 $T_{2B} = 30,00 + 0,111 \cdot 3,135 = 30,35$ тс.

Вертикальная составляющая усилия в цепной опоре по формуле 340

$$V_{2A} = 30,00 \text{ sh} \frac{24,73}{270,270} = 2,75 \text{ tc.}$$

Вертикальная составляющая усилия на якорь по формуле 341

$$V_{2B} = 30,00 \text{ sh} \frac{45,00}{270,270} = 5,02^{\circ} \text{ tc.}$$

Горизонтальное перемещение сооружения по формуле 343 x = 69.73 - 68.92 = 0.81 м.

Пример 82. Определить горизонтальную составляющую натяжения цепей после изменения горизонта воды в случае несимметричной системы заякорения и длинных цепях при исходных данных (рис. 169, *a*): горизонтальная составляющая натяжения цепей до изменения горизонта воды, $H_0^* = 10,00$ тс; вертикальные проекции свободного провеса передней и задней цепей до изменения горизонта воды, $\zeta_0 = 16,00$ м; $\zeta_0 = 12,00$ м; вертикальные проекции свободного провеса передней и задней цепей после изменения горизонта воды, $\zeta = 21,00$ м; $\overline{\zeta} = 17,00$ м (повышение горизонта воды на 5,00 м); калибр передней цепи 77, ГОСТ 6345—65 (цепи литые с распорками; пробная нагрузка 210,0 тс; разрывная нагрузка 294,0 тс); вес 1 м длины цепи в воде q = 0,111 тс/м; калибр задней цепи 67, ГОСТ 6345—65 (цепи литые с распорками; пробная нагрузка 173,6 тс; разрывная нагрузка 242,2 тс), вес 1 м длины цепи в воде $\overline{q} = 0,083$ тс/м.

По формулам 344—348 определяем параметры цепных линий и вспомогательные величины:

$$a_{0} = \frac{10,00}{0,111} = 90,090 \text{ M}; \qquad \overline{a_{0}} = \frac{10,00}{0,083} = 120,500 \text{ M};$$

$$\delta = \frac{0,111}{0,083} = 1.34; \qquad n = \sqrt{\left(\frac{16,00}{12,00}\right)^{3}} = 1,54;$$

$$\chi = \frac{16,00 \sqrt{16,00\cdot120,500} + 12,00 \sqrt{12,00\cdot90,090}}{17,00 \sqrt{21,00\cdot90,090\cdot120,500}} = 0,135 \text{ M}^{-\frac{1}{2}}.$$

Горизонтальная составляющая натяжения цепей после изменения горизонта воды по формуле 349

$$H_1^* = 0,111 \left(\frac{1+1,54\sqrt{1,34}}{0,135\sqrt{1,34}} \right)^2 = 35,16$$
 rc.

Пример 83. Определить горизонтальную составляющую натяжения цепей после изменения горизонта воды в случае симметричной системы заякорения и длинных цепей при исходных данных (рис. 169, б): горизонтальная составляющая натяжения цепей до изменения горизонта воды, $H_0^* = 10,00$ тс; вертикальные проекции свободного провеса передней и задней цепей до изменения горизонта воды $\zeta_0 = 16,00$ м; вертикальные проекции свободного провеса передней и задней цепей после изменения горизонта воды, $\zeta = 21,00$ м (повышение горизонта воды на 5,00 м).

Горизонтальная составляющая натяжения цепей после изменения горизонта воды по формуле 350

$$H_1^* = 10,00 \left(\frac{21,00}{16,00}\right)^3 = 22,61$$
 rc.

Дополнение 8

ОПРЕДЕЛЕНИЕ НАГРУЗОК НА АНКЕРНЫЕ ОПОРЫ, УСИЛИЙ В СВЯЗЯХ И ПЕРЕМЕЩЕНИЙ ПЛАВУЧИХ ОБЪЕКТОВ С УЧЕТОМ ДИНАМИКИ Действий волн

В соответствии с указаниями, изложенными в п. 5.6 главы СНиП II—57—75, расчет систем заякорения плавучих объектов должен производиться с учетом динамики действия волн. Ниже излагается метод такого расчета.

Рис. 170. Графики жесткостных характеристик для симметричных систем заякорения *а*-линейная; *б*-нелинейная.

Заметим предварительно, что все указания, относящиеся к плавучим объектам, системам заякорения и их элементам, изложенные в указанной главе СНиП, а также в дополнении 7, сохраняют свое значение и на рассматриваемом здесь этапе расчета.

Динамические расчеты допускается выполнять в условиях плоских задач и в предположении одностороннего заякорения.

Жесткостная характеристика R(x) системы заякорения представляет собой связь между величинами внешних горизонтальных сил R_x , действующих на заякоренный объект, и величинами горизонтальных перемещений x объекта (рис. 170). Жесткостные характеристики R(x) стро-

ятся по данным статических расчетов: задаваясь рядом значений $R_x = R_2$, $R_3, \ldots,$ находим величины перемещений x_2, x_3, \ldots

При малых перемещениях зависимость R(x) является линейной и представляется прямой

$$R(x) = K_x x, \qquad 351$$

где коэффициент жесткости системы заякорения $K_x = tg \alpha$, α — угол наклона прямой (рис. 170, а). При немалых перемещениях зависимость R(x) является нелинейной (рис. 170, б) с различными углами наклона $\alpha(x)$, т. е. с различными величинами коэффициентов жесткостей при различных значениях перемещений x. Нелинейная зависимость R(x) аналитически представляется в виде нечетного полинома

$$R(x) = K_1 x + K_2 x^3. 352$$

При малых колебаниях (линейная постановка задач) частота λ_x свободных горизонтальных колебаний плавучего заякоренного сооружения определяется по формуле

$$\lambda_x = \sqrt{\frac{K_x}{M_x \, \mathrm{np}}},$$
353

где M_{x пр} — приведенная масса плавучего заякорения сооружения при горизонтальных колебаниях, определяемая по формуле

$$M_{x np} = M + M_{xB} + M_{xR}.$$
 354

Здесь M — собственная масса сооружения;

*М*_{жв} — приведенная масса воды при горизонтальных колебаниях;

*М*_{яя} — приведенная масса якорных связей при горизонтальных колебаниях.

При определении величин присоединенных масс воды M_{xB} для заякоренных объектов различной формы используются известные рекомендации из теории качки судов.

Приведенная масса якорных связей обусловливается инерционным влиянием связей на колебания заяжоренного сооружения. Для отдельной якорной цепи величина M_{xx} приближенно определяется по формуле

$$M_{xg} = (0,30M_g + M_{rp}) \left(\frac{H^*}{0,50G_g + G_{rp}}\right)^2 \frac{S^2}{S^2 - \zeta^2},$$
 355

- где M_я масса якорной связи (цепи) на длине свободного провеса с учетом присоединенной массы воды:
 - *М*_{гр} масса подвешенного к якорной связи груза с учетом присоединенной массы воды;
 - G_в вес в воде якорной связи на длине свободного провеса;
 - Grр вес в воде подвешенного к якорной связи груза;
 H* горизонтальная составляющая натяжения якорной связи в рабочем состоянии;
 - S --- длина свободного провеса якорной связи в рабочем состоянии; стоянии.

(Величины H^* , S, ζ принимаются по данным статистических расчетов).

Масса и единицы длины якорной цепи с учетом присоединенной массы воды определяется по формуле

$$\mu = 1,30 \frac{q}{g}, \qquad 356$$

где q — вес единицы длины цепи в воде;

g — ускорение силы тяжести.

Масса подвешенного к якорной связи груза с учетом присоединенной массы воды определяется по формуле

$$M_{\rm rp} = k \frac{G_{\rm rp}}{g}, \qquad 357$$

где k = 1,30 — для стальных и чугунных грузов,

k=2,30 — для железобетонных грузов; остальные обозначения прежние.

Поверка динамической работы плавучего заякоренного сооружения на резонанс заключается в определении величин отношений вынужденных частот σ расчетных волн к собственным частотам λ_x колебаний сооружения и в установлении величин коэффициентов динамичности k_{π} . Необходимо, чтобы величины частот σ и λ_x отличались между собой. При близких величинах этих частот существенно возрастают усилия в якорных связях и амплитуды колебаний вследствие резонансных явлений.

Величины коэффициентов динамичности k_{π} определяются в зависимости от соотношений частот вынужденных и свободных колебаний, а также от затухания в системе по известным формулам. При неизвестных величинах затухания в системах величины коэффициентов динамичности допускается определять по формуле

$$k_{\rm A} = \frac{1}{1 - \frac{\sigma^2}{\lambda_{\rm A}^2}}.$$
 358

При проектировании плавучих заякоренных сооружений нужно стремиться, чтобы области возможной работы сооружения на резонансных графиках $k_{\mu}(\sigma, \lambda_x)$ были удалены от области резонанса.

Изменение частот свободных колебаний заякоренного сооружения достигается изменениями: первоначального натяжения цепей, погонного веса цепей, мест расположения цепных опор, глубин, массы сооружения, масс подвешенных к цепи грузов и др.

При немалых колебаниях (нелинейная постановка задач), т. е. при нелинейной жесткостной характеристике R(x), частота λ_x свободных горизонтальных колебаний зависит от амплитуд а_х колебаний, при этом

Ka

$$\lambda_x = \sqrt{\beta^2 + 0.732 \sqrt{a_x^2}},$$
 359

где

$$\beta^{3} = \frac{K_{\mathbf{q}}}{M_{x \, np}},$$

$$\gamma = \frac{K_{2}}{M_{x \, np}}.$$
360
361

Практический интерес представляют:

величины частот λ_x при значениях амплитуд a_x , обусловленных действием расчетных внешних сил;

величины амплитуд a_x , при которых следуют значения частот λ_x , близкие к частоте σ волн.

При проектировании могут строиться нелинейные резонансные графики $a_x(\sigma)$ при различных значениях внешних сил.

Определение вынужденных колебаний плавучих заякоренных сооружений связано с характером воздействия внешних динамических нагрузок и производится по известным из литературы рекомендациям.

Горизонтальная составляющая Н*2д натяжения цепи в рабочем состоянии (она же горизонтальная нагрузка на якорь) с учетом динамического волнения находится по формуле

$$H_{2a}^* = H_2^* + k_a A_x, \qquad 362$$

где H2* — горизонтальная составляющая натяжения цепи в рабочем состоянии по результатам статического расчета;

k_д — коэффициент динамичности;

A_x — амплитуда поперечной горизонтальной нагрузки, определяемая по формуле 126(103).

После определения значения H^*_{2g} остальные параметры заякорения определяются по формулам для статических расчетов, в которых величину H^*_2 следует заменить на $H^*_{2\mathfrak{q}}$.

Горизонтальную натрузку N_y, передаваемую плавучим причалом на корневую часть в продольном по отношению к причалу направлении, следует определять по формуле

$$N_y = N_y^* + k_{\mu}R_y, \qquad 363$$

где N_u* — продольная нагрузка от первоначального натяжения торцевых связей; \dot{R}_y — суммарная продольная нагрузка на плавучий причал с ошвартованными судами;

k_д — коэффициент динамичности, принимаемый равным от 1,1 до 1,3.

Величина N_y должна приниматься не меньшей разрывного усилия для одного швартовного троса расчетного судна.

Горизонтальная нагрузка, передаваемая плавучим причалом на корневую часть в поперечном по отношению к причалу направлении, должна определяться с учетом совместной работы конструктивных элементов, соединяющих причал с корневой частью, и системы заякорения.

Плавучие доки могут устанавливаться на якорях, у береговых стационарных сооружений, а также у гибких или жестких палов. При расчете нагрузок на палы должны учитываться: схема установки плавучего дока у палов, конструкции палов и креплений дока к палам, характеристики отбойных устройств между доками и палами.

Поперечную горизонтальную нагрузку N_x на пал от плавучего дока следует определять по формуле

$$N_x = 1,1 \ \frac{R_x + k_{\scriptscriptstyle A} A_x}{n}, \qquad 364$$

где R_x и A_x — те же, что и в формулах 119(99), 124(101), 126(103);

n — количество палов, воспринимающих нагрузку;

k_и -- коэффициент динамичности для системы док-палы.

Учет динамики одиночного груза на цепи. Дополнительными исходными данными к данным при статических расчетах) являются:

Е — модуль упругости цепи:

M_{гр} — масса груза с учетом присоединенной массы воды; a_x, a_z — величины проекций на оси координат амплитуды вынужденных колебаний цепной опоры;

σ — частота вынужденных колебаний.

Кроме указанных, известными также являются следующие величины, получаемые статическими расчетами (см. рекомендации, приведенные в дополнении 7, п. Б и Г):

 $H_{2^{*}}, T_{2A}, V_{2A}, l, \eta_{2C}, \zeta_{2C}, a_{2}, S^{*}, \sin a_{2}, \cos a_{2}$

Расчеты производятся по приведенным ниже зависимостям.

Коэффициент жесткости, приведенный к точке подвеса груза к цепи и обусловливаемый упругой работой верхнего участка цепи, определяется формулой

$$C_0 = \frac{\pi d^2 E}{2S_0},$$
 365

где *d* — калибр цепи;

So. – длина верхнего участка цени.

Коэффициенты жесткостей, приведенные к точке подвеса груза к цепи (при горизонтальных и вертикальных перемещениях груза) и обусловливаемые работой всей цепи от клюза до якоря, находятся по формулам

$$K_x = C_1 + C_0 \cos \alpha_2 \sin \alpha_2; \qquad 366$$

$$K_z = C_2 + C_0 \sin^2 \alpha_2 + \frac{T_{2A}}{S_0}, \qquad 367$$

в которых коэффициенты C₁, C₂ характеризуют работу нижнего участка цепи и определяются из выражений:

при заякорении длинными цепями

$$C_1 = q \frac{a_2 \zeta_{2C}}{(l_2 - S_0) \eta_{2C} - 2a_2 \zeta_{2C}},$$
 368

$$C_{2} = C_{1} \frac{\eta_{2c} \left(\zeta_{2c} + a_{2}\right)}{a_{2}\zeta_{2c}} - q \frac{a_{2} \left(l_{2} - S_{0}\right)}{\left(l_{2} - S_{0}\right) \eta_{2c} - 2a_{2}\zeta_{2c}};$$
369

273

$$C_{1} = q \frac{a (\zeta_{2c} + \zeta_{2c})}{(S^{*} + \tilde{S})(\eta_{2c} + \tilde{\eta}_{2c}) - 2a_{2} (\zeta_{2c} + \tilde{\zeta}_{2c})};$$
370

$$C_{2} = C_{1} \frac{[(\zeta_{2c} + \tilde{\zeta}_{2c}) + a_{2}](\eta_{2c} + \tilde{\eta}_{2c})}{a_{2}(\zeta_{2c} + \tilde{\zeta}_{2c})} - q \frac{a_{2}(S^{*} + \tilde{S})}{(S^{*} + \tilde{S})(\eta_{2c} + \tilde{\eta}_{2c}) - 2a_{2}(\zeta_{2c} + \tilde{\zeta}_{2c})}, \quad 371$$

где

$$\tilde{\eta}_{2c} = a_2 \operatorname{Arth} \frac{\zeta_{2c}}{S^*} - \frac{1}{2} \eta_{2c};$$
 372

$$\widetilde{S} = a_2 \operatorname{sh} \frac{\widetilde{\eta_{2c}}}{a_2}; \qquad 373$$

$$\widetilde{\zeta}_{2c} = a_2 \left(ch \frac{\eta_{2c}}{a_2} - 1 \right), \qquad 374$$

q — Јевс единицы длины цепи в воде; S^{*} — длина нижнего участка цепи от груза до якоря (при коротких цепях).

Частота свободных вертикальных колебаний груза

$$\lambda_z = \sqrt{\frac{K_z}{M_{\rm rp}}}.$$
 375

Величина полного наибольшего натяжения цепи в цепной опоре (статическая и динамическая составляющие)

$$T_A = T_{2A} + \left(a_z + \frac{K_x}{K_z} a_x\right) C_0 \frac{\sigma}{\lambda_z} \sin \alpha_2.$$
 376

Пример 84. Определить полное усилие в цепной опоре длинной цени (рис. 164) с подвесным грузом при исходных данных для примера 77, где приведен статический расчет. По данным статического расчета имеем: калибр цепи 43 (d = 43 мм); вес 1 м длины цепи в воде q = 0,034 тс/м; вес в воде подвешенного к цепи пруза G=20,0 тс; длина верхнего участка цепи $S_0 = 12,50$ м;

$$\begin{split} H_2^* &= 35,0 \text{ tc}; \quad T_{2A} &= 43,47 \text{ tc}; \quad V_{2A} &= 25,78 \text{ tc}; \quad l_2 &= 170,51 \text{ m}; \\ \eta_{2C} &= 157,40 \text{ m}; \quad \zeta_{2C} &= 12,05 \text{ m}; \quad a_2 &= 1029,41 \text{ m}; \\ \sin a_2 &= \frac{V_{2A}}{T_{2A}} &= \frac{25,78}{43,47} = 0,593; \quad \cos a_2 &= \frac{H_2^*}{T_{2A}} &= \frac{35,0}{43,47} = 0,805. \end{split}$$

Дополнительные данные: модуль упругости цепи $E = 450000 \text{ кгс/см}^2 = 450 \text{ тс/см}^2$; амплитуды вынужденных колебаний цепной опоры $a_x = a_z = 0,20 \text{ м}$; частота вынужденных колебаний (период волн $\tau = 6,20 \text{ с}$) $\sigma = \frac{2\pi}{\tau} = \frac{6.28}{6.20} = 1,013 \text{ c}^{-1}.$

Масса груза с учетом присоединенной массы воды по формуле 357

$$M_{\rm rp} = 2,30 \, \frac{20,0}{9,81} = 4,689 \, {\rm tc} \cdot {\rm c}^2 / {\rm m}.$$

Величины коэффициентов Со, С1, С2 находятся по формуле 365, 368, 369: 0 1 4 4 000 450

$$C_0 = \frac{3,14 \cdot 4,30^{\circ} \cdot 450}{2 \cdot 12,50} = 1045,055 \text{ rc/m};$$

$$C_1 = 0,034 \cdot \frac{1029,41 \cdot 12,05}{(170,51 - 12,50) \cdot 157,40 - 2 \cdot 1029,41 \cdot 12,05} = 6,806 \text{ rc/m};$$

$$C_{2} = 6,806 \frac{157,40 (12,05 + 1029,41)}{1029,41 \cdot 12,05} - 0,034 \frac{1029,41 (170,51 - 12,50)}{(170,51 - 12,50) \cdot 157,4 - 2 \cdot 1029,41 \cdot 12,05} = 0,698 \text{ tc/m}$$

Величины коэффициентов жесткостей K_x, K_z находятся по формулам 366 и 367:

$$K_x = 6,806 + 1045,055 \cdot 0,805 \cdot 0,593 = 505,679 \text{ tc/m};$$

 $K_z = 0,698 + 1045,055 \cdot 0,593^\circ + \frac{43,47}{12.50} = 371,669 \text{ tc/m}.$

Частота свободных вертикальных колебаний груза по формуле 375

$$\lambda_z = \frac{371,669}{4,689} = 8,903 \text{ c}^{-1}.$$

Величина полного наибольшего натяжения цепи в цепной опоре по формуле 376

$$T_A = 43,47 + \left(0,20 + \frac{505,679}{371,669},0,20\right) 1045,055 \frac{1,013}{8,903},0,593 = 76,759 \text{ tc.}$$

Пример 85. Определить полное усилие в цепной опоре короткой цепи (рис. 166) с подвесным грузом при исходных данных для примера 79, где приведен статический расчет. По данным статического расчета имеем: калибр цепи 43 (d=43 мм); вес 1 м длины цепи в воде q=0,034 тс/м; вес в воде подвешенного к цепи груза G=20,0 тс; длина верхнего участка цепи $S_0=12,50$ м; длина нижнего участка цепи от груза до якоря $S^*=$ =50,0 м;

$$H_{2}^{*} = 35,0 \text{ rc}; \quad T_{2A} = 45,75 \text{ rc}; \quad V_{2A} = 29,46 \text{ rc};$$

$$\eta_{2C} = 48,68 \text{ M}; \quad \zeta_{2C} = 11,39 \text{ M}; \quad a_{2} = 1029,41 \text{ M};$$

$$\sin a_{2} = \frac{V_{2A}}{T_{2A}} = \frac{29,46}{45,75} = 0,644; \quad \cos a_{2} = \frac{H_{2}^{*}}{T_{2A}} = \frac{35,0}{45,75} = 0,765$$

Дополнительные данные: модуль упругости цепи $E = 450 \text{ тс/см}^2$; амплитуды вынужденных колебаний цепной опоры $a_x = a_z = 0,10 \text{ м}$; частота вынужденных колебаний (период волн $\tau = 6,20 \text{ c}$) $\sigma = \frac{2\pi}{\tau} = \frac{6,28}{6,20} = 1,013 \text{ c}^{-1}$. Масса груза с учетом присоединенной массы воды по формуле 357

$$M_{\rm rp} = 2,30 \frac{20,0}{9,81} = 4,689 \text{ tc} \cdot \text{c}^2/\text{m}.$$

Коэффициент жесткости C_0 по формуле 365

$$C_0 = \frac{3.14 \cdot 4.30^2 \cdot 450}{2 \cdot 12.50} = 1045,055 \text{ tc/m}.$$

По выражениям 372, 373, 374 значения вспомогательных величин

$$\widetilde{\eta}_{2c} = 1029,41 \text{ Arth } \frac{11,39}{50,0} - \frac{1}{2} 48,68 = 214,483 \text{ m};$$

$$\widetilde{S} = 1029,41 \text{ sh } \frac{214,483}{1029,41} = 216,662 \text{ m};$$

$$\widetilde{\zeta}_{2c} = 1029,41 \left(\text{ch } \frac{214,483}{1029,41} - 1 \right) = 22,647 \text{ m}.$$

По формулам 370 и 371

$$C_1 = 0.034 \frac{1029.41 (11.39 + 22.647)}{(50.0 + 216.662)(48.68 + 214.483) - 2 \cdot 1029.41 (11.39 + 22.647)} = 11.979 \text{ Tc/m};$$

$$\begin{split} C_{\mathbf{2}} &= 11,979 \frac{\left[(11,39+22,647) + 1029,41 \right] \quad (48,68+214,483)}{1029,41 \quad (11,39+22,647)} - \\ &\quad - 0,034 \frac{1029,41 \quad (50,0+216,662)}{(50,0+216,662)(48,68+214,483) - 2 \cdot 1029,41 \quad (11,39+22,647)} = 1,824 \quad \mathrm{tc/m}. \end{split}$$

По формулам 366 и 367

 $K_x = 11,979 + 1045,055 \cdot 0,765 \cdot 0,644 = 526,836 \text{ tc/m};$ $K_z = 1,824 + 1045,055 \cdot 0,644^2 + \frac{45,75}{12,50} = 438,906 \text{ tc/m}.$

Частота свободных вертикальных колебаний груза по формуле 375

$$\lambda_z = \sqrt{\frac{438,906}{4,689}} = 9,675 \text{ c}^{-1}.$$

Величина полного наибольшего натяжения цепи в цепной опоре по формуле 376

$$T_A = 45,75 + \left(0,10 + \frac{526,836}{438,906},0,10\right)1045,055\frac{1,013}{9,675},0,644 = 61,250$$
 rc.

Дополнение 9

ОПРЕДЕЛЕНИЕ РАСЧЕТНЫХ ХАРАКТЕРИСТИК СУДОВ

1. Тип судна, его основные размерения и состояние загрузки должны определяться заданием на проектирование причального сооружения или принимаются по Нормам технологического проектирования морских портов. Остальные характеристики судов, необходимые для выполнения расчетов, определяются в соответствии с требованиями госстандартов на оп-

Таблица 128

Расчетные характеристики судна	Способ или источник определения
Тип судна, основные размере- ния и характеристики	Задание на проектировашне, справочники ос- новных технико-экономических характеристик судов, табл. 134 и 135
Динамические характеристики судна	Справочник основных технико-экономических характеристик, паспорт судна, информация об остойчивости, формулы в табл. 129
Площади парусности	Справочник основных технико-экономических характеристик, паспорт судна, чертежи об- щего вида, информация об остойчивости, фор- мулы 386 и 387
Протяженность прямолинейной части борта судна	Теоретические чертежи судов, формула 388
Прочность и жесткость борто- вого перекрытия судна	Класс Регистра судна и табл. 133, а и 133, б

ределение основных характеристик судов, Правил Регистра СССР и Речного Регистра РСФСР, по чертежам, паспортам, оправочникам основных эксплуатационно-технических характеристик судов, информации об остойчивости и прочим документам справочного характера.

При этом характеристики судов, зависящие от степени его загрузки, рассматриваются для трех случаев: в грузу, в балласте и порожнем; в случае отсутствия данных о характеристиках судов в балласте допускается их определять как среднее значение между величинами соответствующих характеристик для судов в грузу и порожнем.

При выполнении расчетов можно пользоваться далными, включенными в табл. 128, приведенными ниже приближенными формулами для определения расчетных характеристик судов, обобщенными расчетными

Характеристика судна	Формулы для приближенного вычисления динамических характеристик
1	2
Период собственной бортовой качки судна, т _ө	a) $\tau_{\theta} \approx 4 \sqrt{T}$, орнентировочно; 6) $\tau_{\theta} = C \frac{B}{\sqrt{h_{\text{M}}}}$ более точно, где T — осадка судна, м, при рассматриваемой загрузке; B — ширина судна, м; h_{M} — попереч- ная метацентрическая высота, м; C =0,78÷0,81 для грузовых и 0,85 для грузопассажирских судов
Поперечная метацентрическая высота, h _м , м	$h_{\rm M} = z_{\rm c} + r - z_{g},$ 378 где $z_{\rm c}$ — возвышение центра величины над ос- новной, м; z_{g} — возвышение центра тяжести над основной, м; r — поперечный метацентри- ческий радиус, м
Возвышение центра величины над основной, <i>г</i> с, м	$z_c = 0,5T \sqrt{\frac{a}{\delta}},$ 379 где $a - коэффициент полноты ватерлинии, вы-числяемый как отношение площади сеченияданной ватерлинии при осадке T к площадиописанного прямоугольника, имеющего сторо-нами длину и ширину этого сечения; \delta - ко-эффициент общей полноты (полноты водоиз-мещения), вычисляемый как отношение объ-емного водоизмещения судна при даннойосадке T к объему описанного прямоуголь-ного параллелепипеда, имеющего сторонамидлину, ширину и осадку судна по ватерлиниипри рассматриваемой загрузке$
Возвышение центра тяжести над основной, <i>г_g,</i> м	$z_g = \xi H_{\xi}$, 380 где $\xi = 0,70$ для судов порожнем; $\xi = 0,60$ для судов в балласте; $\xi = 0,55$ для судов в полном грузу
Поперечный метацентрический радиус, <i>г</i> , м	$r = K_r \frac{a^2 B^2}{bT},$ 381 где $K_r \approx 0,086 - 0,089$
Абсцисса центра тяжести суд- на x _q , м, отсчитываемая в кор- му от миделевого сечения	$ \begin{vmatrix} x_{\varphi} \approx 0 - для судов в полном грузу, \\ x_{\varphi} = (0,015 \div 0,025) L_{H6} - для судов порожнем при центральном расположении машинного отделения; \\ x_{\varphi} = (0,07 \div 0,09) L_{H6} - для судов порожнем при расположении машинного отделения в корме \\ \end{vmatrix} 382 $
Ордината точки приложения нагрузки от навала судна от- носительно его центра тя- жести I ₀ , м	$l_{\theta} = T - z_g + l_0,$ 383 где l_0 — высота расположения середины отбойного устройства над водной поверхностью, м

характеристиками морских судов (табл. 134) и характеристиками судов внутреннего плавания (табл. 135).

а) Площадь боковой парусности судна F_{x} , м², определяется в зависимости от типа судна и его наибольшей длины $L_{\mu \sigma}$ по выражению

$$F_x = f_x L_{\rm H6}^2, \qquad 386$$

где f_x — коэффициент, определяемый по табл. 130; в числителе приведены значения этого коэффициента для судов в полном грузу, а в знаменателе — для судов порожнем.

Таблица І	130
-----------	-----

Tunu auron	Величины коэффициента f_x при наибольшей длине судна $L_{\rm H6}$, м										
типы судов	50	100	150	200	250	300					
Грузопассажирские	$\frac{0,10}{0,12}$	$\frac{0,10}{0,12}$	$\frac{0,10}{0,12}$	<u>0,09</u> 0,11	<u>0,09</u> 0,11	0,09 0,10					
Сухогрузные общего назначения	$\frac{0.06}{0.10}$	$\frac{0,06}{0,10}$	$\frac{0,06}{0,10}$	0,06 0,10	_	-					
Танкеры и балкеры	0,08 0,16	<u>0,06</u> <u>0,10</u>	0,05 0,10	0,05 0,09	<u>0,04</u> <u>0,08</u>	0,04 0,08					
Рыбопромысловые	0,09 0,13	$\frac{0,09}{0,12}$	0,09 0,11	0,08 0,11	$\frac{0,08}{0,10}$						

Для судов, имеющих палубный груз (лесовозы, контейнерные суда и проч.), необходимо дополнительно учитывать боковую площадь парусности груза, расположенного над уровнем фальшборта.

б) Площадь лобовой парусности судна F_y , м², определяется в зависимости от типа судна и его ширины B по формуле

$$F_{\rm v} = f_{\rm v} B^2, \qquad 387$$

где fy — коэффициент, определяемый по табл. 131.

Таблица 131

Tress aurop	Величина коз	ффициента f _y
	суда в грузу	суда порожнем
Грузопассажирские Сухогрузные общего назначения Танкеры и балкеры Рыбопромысловые	1,20 0,95 0,90 1,10	1,30 1,20 1,20 1,30

в) Протяженность прямолинейной части борта судна l₅, м, определяется в зависимости от типа судна и его наибольшей длины по формуле 388 $l_6 = a_6 L_{\rm H6}$

где a6 — коэффицисит, определяемый по табл. 132, где в числителе приведены значения этого коэффициента для судов в полном грузу, а в знаменателе — для судов порожнем. Таблица 132

Типы судов	Величины коэффициента а _б при нанбольшей длине судна L _{нб} , м									
·	50	100	150	200	250					
Грузопассажирские	$\frac{0,28}{0,21}$	$\frac{0,28}{0,24}$	$\frac{0,30}{0,27}$	$\frac{0,34}{0,29}$	$\frac{0,35}{0.32}$					
Сухогрузные общего назначения	$\begin{array}{c} 0,36\\ \overline{0,24} \end{array}$	0,36 0,26	<u>0,37</u> <u>0,29</u>	$\frac{0,40}{0,30}$	_					
Балкеры	$\frac{0,36}{0,28}$	0,44 0,34	0,47 0,36	$\frac{0,48}{0,38}$	$\frac{0,50}{0,40}$					
Танкеры	$\frac{0,30}{0,20}$	0,35 0,21	0,38 0,24	$\frac{0,40}{0,26}$	$\frac{0,42}{0,28}$					
Рыбопромысловые	$\frac{0,38}{0,26}$	$\frac{0,38}{0,28}$	$\frac{0,40}{0,30}$	$\frac{0,42}{0,32}$	$\frac{0,44}{0,33}$					

2. Прочность бортового перекрытия морских судов и его жесткость могут быть рассчитаны по предельной нагрузке на пластину бортовой обшивки, жестко заделанную на опорном контуре, образованном шпангоутами и стрингерами — при поперечной системе набора судна — и рамными шпангоутами и продольными балками — при продольной системе набора, если в соответствии с Правилами Регистра СССР принять напряжение в крайних фибрах равным 0,9 от предела текучести материала обшивки. Для облегчения этих расчетов можно воспользоваться данными табл. 133, а, где в зависимости от класса Регистра и наибольшей длины судна в числителе приведены предельные нагрузки на 1 м длины борта

Таблица 133, а

Характеристика бортового перекрытия по классу Регистра СССР	Величины предельных нагрузок на бортовое перекры- тие морских судов, тс, на 1 м длины борта в горизои- тальном направлении (числятель) и, тс/м ² , (знаменатель) при наибольшей длине судна L _{Hб} , м											
	50	75	100	150	200	250	300					
Бортовое перекрытие с ледовыми подкреплениями по категории \mathcal{J}_1 и \mathcal{J}_2 Бортовое перекрытие с ледовы- ми подкреплениями по катего- рии \mathcal{J}_3 Бортовое перекрытие без ледо- вых подкреплений	$ \begin{array}{c} 45 \\ \overline{70} \\ 30 \\ \overline{50} \\ 15 \\ \overline{40} \end{array} $	57 85 42 66 26 46	$\begin{array}{r} 70\\ \hline 100\\ \hline 54\\ \hline 80\\ \hline 37\\ \hline 50\\ \end{array}$	$ \begin{array}{r} 95 \\ \overline{133} \\ 76 \\ \overline{106} \\ \underline{58} \\ \overline{60} \\ \end{array} $	$ \begin{array}{r} & 120 \\ \hline 164 \\ 99 \\ \hline $	$ \begin{array}{r} 144 \\ \overline{197} \\ 122 \\ \overline{160} \\ 101 \\ \overline{78} \end{array} $	$ \begin{array}{r} 169 \\ \overline{230} \\ 145 \\ \overline{186} \\ 122 \\ \overline{87} \\ \end{array} $					

судна в горизонтальном направлении, а в знаменателе — предельные значения удельных нагрузок, тс/м²; в табл. 133, б приведены ориентировочные значения наименьшей жесткости бортовых перекрытий судов.

При определении предельных нагрузок на бортовые перекрытия морских судов необходимо учитывать, что для судов, имеющих продольную систему набора в средней части корпуса, протяженность опорного

Тиолица 155, 0
k _ж , тс/м
$\begin{array}{c} 1 \cdot 10^{4} \\ 0,5 \cdot 10^{4} \\ 0,5 \cdot 1,0^{5} \\ 0,5 \cdot 1,0^{4} \\ 0,5 \cdot 1,0^{4} \\ 0,5 \cdot 1,0^{3} \end{array}$

контура в горизонтальном направлении может иметь длину порядка 3,0 м; поэтому размеры отбойных устройств для таких судов должны иметь горизонтальный размер в продольном направлении не менее 3.0 м или оборудоваться соответствующим распределительным щитом.

Предельное значение нагрузки Н_x, тс, на бортовое перекрытие судов внутреннего плавания может быть определено по выражению: $H_{\star} \leq L_{\rm mb} = 20.$

										,				
													Табли	<u>4a 134</u>
R			J	Тинейн	se xap	актерис	тики, 1	M 		Faron	Парусно	DCTL, M ²	na E	Hd.
Ļ,		Дл	ина			Oca	дка	Протя	жен-		^{an} 'x		y 1	Y T
THC	A V		<u>۲</u>					няя ность прямо-						бина
e	۲.	^с нб	лик		Высо- та			части І	борта, К					LIYO
HeH I	ThC	а,	лп пп	рина,	борта,		, r							1 33
BME	йт,	PII	, L	в		ъ.	Нем	У.	нем	Å	нем	, v	нем	M, J
AOM	ABe	100	жду рамі			rpya	- Xod	G	жод	rpya	жоd	.pya	wod	име 13, 1
B	Ъ	Hai	Me: JRL			Ā	Ê	•	ОЦ	8	ЮЦ	8 1	lou	Ha
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		_				Гру	/зопас	сажир	оские					
0,5	0,1	60	54	8,2	3,3	3,0	2,0	17	15	380	430	80	90	3,5
1	0,3	68	62 77	10,0	3,7	3,2	2,1	20	17	480	550 820	120	130	3,7
3	0,8	100	92	13,8	6,5	4,2	3,0	30	26	1000	1150	230	250	4,9
5	1,5	120	111	16,2	7,7	5,0	3,6	37	32	1450	1650	290	310	5,7
10	2,2	130	120	19.2	8,7 10 ft	5,8 68	4,4	41	39	1940	2220	300 440	- 390 - 480	0,1
15	5,0	160	146	21,5	11,8	8,0	5,4	52	46	2520	2900	550	600	8,9
20	6,7	180	164	23,4	13,6	8,6	5,7	60		2840	3270	650	710	9,7
50	10	210	195 244	20,5	23.0	10.0	6.8	102	91	6940	8080	1100	1200	11.6
75	25	330	280	35,0	28,0	11,0	7,2	132	118	9640	10300	1500	1600	13,0
					Сух	огруз	ные о	бщего	назн	ачения				
1	0.6	50	47	8,4	3,8	3,4	1,8	17	12	19 C	270	70	80	3,9
2	1,2	70	60	10,5	5,2	4,0	2,0	24	17	370	540	100	130	4,5
36	1,8	100	72 88	12,0	0,0 72	4,0	2,1	29 36	21	450	1050	140	230	5,2 6,2
Ť	4,5	112	100	15,2	8,2	6,3	2,6	41	30	860	1300	220	280	7,0
10	6,6	125	113	16,8	9,6	7,2	2,9	46	34	1090	1640	270	340	7,9
20	14	140	146	21.2	12.3	9.0	3,2	62	40	1650	2560	430	540	9,9
30	23	185	170	23,2	14,0	10,0	3,8	71	53	2100	3300	510	650	
50	 40	212	196	27,5	16,0	12,0	5,0	86	65	3230	4210	720	1 910	13,3
280														

389

Продолжение табл. 134

<u> </u>	. 1	, 1	4	E	6	7 1	<u>e</u>	6	10	11	10	19	14	15
<u></u>	2	3	4	5	0	[0	я	10	11	12	13		10
							Бал	кери	A					
3 5 7 10 15 20 30 50 75 100 125 150 200	$1,8 \\ 3,1 \\ 4,5 \\ 6,5 \\ 10 \\ 15 \\ 23 \\ 40 \\ 60 \\ 80 \\ 100 \\ 120 \\ 160 \\ 160 \\ 160 \\ 100 \\ 160 \\ 100 $	86 97 108 124 144 157 180 213 232 252 266 280 300	82 90 98 111 130 144 163 190 215 233 246 265 280	12,0 13,6 14,7 16,3 18,5 20,2 23,5 28,5 32,0 34,5 37,0 39,0 43,0	5,5 7,6 9,0 10,5 11,7 13,2 17,5 19,8 21,0 22,5 24,0	5,1 5,7 6,3 7,2 8,0 8,6 9,5 10,8 12,2 13,6 14,6 15,5 17,0	2,3 2,4 2,6 2,8 2,9 3,0 3,1 3,2 3,4 3,6 3,8 4,2 4,8	$ \begin{vmatrix} 37 \\ 42 \\ 48 \\ 56 \\ 68 \\ 73 \\ 85 \\ 104 \\ 114 \\ 126 \\ 135 \\ 144 \\ 156 \end{vmatrix} $	29 32 37 44 57 77 83 91 100 108 116 126	450 570 640 890 1150 1340 1680 2210 2530 2850 3070 3290 3600	750 940 1070 1500 2310 2980 4020 4680 5400 5920 6420 7200	130 170 190 240 310 360 500 730 920 1100 1200 1400 1700	170 220 260 320 410 490 660 970 1200 1400 1600 1800 2200	5,8 6,4 7,0 7,9 9,5 10,6 12,1 13,5 15,2 16,6 17,1 19,0
							Тан	кер	ы					
2 3 5 7 10 15 20 30 50 75 100 125 150 200 250 300	$1,2 \\ 1,8 \\ 3,3 \\ 4,9 \\ 7,2 \\ 11 \\ 15 \\ 23 \\ 38 \\ 58 \\ 80 \\ 102 \\ 122 \\ 166 \\ 208 \\ 250 \\ 102 $	75 85 108 114 130 150 164 188 222 242 264 280 205 320 338 350	68 78 96 122 136 150 171 205 225 247 263 278 302 320 330	$\begin{array}{c} 10,0\\12,4\\15,0\\16,4\\18,4\\20,4\\22,4\\26,0\\29,0\\32,8\\36,4\\40,7\\43,0\\47,0\\50,0\\52,0\end{array}$	4,8 5,2 6,3 7,2 8,4 9,6 10,6 12,5 14,6 17,0 18,8 20,3 22,0 24,0 25,5 26,5	4,4 4,8 5,4 6,0 6,8 8,0 8,6 9,8 11,4 13,0 14,0 15,1 16,0 17,6 19,0 20,0	2,3,4,4,5,6,7,8,0,3,5,8,2,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	$\begin{array}{c} 26\\ 30\\ 37\\ 42\\ 48\\ 57\\ 62\\ 74\\ 90\\ 101\\ 112\\ 121\\ 129\\ 144\\ 156\\ 162\\ \end{array}$	16 18 23 25 36 40 48 60 67 75 82 88 99 108 112	350 440 610 950 1240 1450 1810 2350 3050 3290 3520 3840 4140 4280	580 730 1030 1280 1640 2140 2530 3240 4330 5020 5850 6400 7000 7900 8700 9200	90 140 200 240 310 380 450 610 760 970 1200 1500 1500 1500 1500 2000 2500	120 190 270 320 410 500 600 910 1300 1400 1800 2400 2800 3000	4,9 5,3 6,1 6,7 7,7 8,0 9,5 10,9 12,7 14,3 15,6 16,7 18,0 19,6 21,0 22,0
						Рыб	опр	омы	слов	ые				
0,5 1 2 3 5 7 10 15 20 30 50	0,2 0,4 0,9 1,5 2,6 3,7 5,4 8,3 11 17 28	58 62 70 77 53 110 130 160 180 198 225	52 56 63 70 86 100 117 142 160 178 205	8,0 9,3 11,0 12,6 15,0 16,5 18,0 20,0 21,5 23,4 26,0	4,0 4,8 6,0 6,8 8,2 9,6 11,0 13,0 14,8 17,0 20,5	3,7 4,0 5,0 5,6 6,0 6,6 7,7 8,8 10,7 13,0	1,8 2,1 2,7 3,0 3,4 3,5 3,6 3,9 4,1 4,5 5,5	21 23 26 29 35 42 51 65 74 83 97	15 16 19 21 26 31 38 49 56 63 74	350 390 490 560 870 1110 1480 2300 2920 3350 4200	430 490 610 690 1090 1440 1960 2940 3770 4330 5470	70 100 130 170 290 300 360 440 510 600 740	80 110 200 290 350 420 520 600 710 870	4,2 4,5 5,1 5,5 6,3 6,7 7,5 8,6 9,4 11,8 14,3
						Ледо	жолы	ибу	ксира	d				
0,5 1 2 3 5 7 10 15 20	0,1 0,3 0,7 1,0 1,7 2,6 3,8 6,0 8,0	45 50 60 68 80 90 103 120 138	43 47 55 62 73 83 95 111 128	16,8 17,0 17,6 18,0 19,2 20,2 21,8 24,4 27,0	6,0 6,5 7,3 8,0 9,4 10,4 12,0 14,6 17,2	3,6 4,0 4,7 5,4 6,7 7,7 8,8 10,5 12,0	3,4 3,6 4,1 4,6 5,4 6,1 6,7 7,8 8,7	9 10 12 14 16 18 21 24 28	7 8 9 10 12 14 15 18 20	260 330 470 600 800 960 1160 1470 1810	300 380 540 690 940 1120 1380 1750 2180	250 260 280 290 330 370 430 540 660	200 290 310 320 370 410 480 600 730	4,0 4,5 5,2 5,9 7,2 8,6 9,6 10,9 13,0

Таблица 135

		-	Водон щени т	ізме- е, <i>D</i> , с	Габарт разме м	итные еры,	Оса сред м	дка (няя, 4	главной	ной части	сть судна	гь судна
Тип судна	Проект	Класс регистра	в грузу	порожнем	длина L _{нб}	ширина В	c rpyaom T	6e3 rpy3a T ₀	Высота борта до палубы H ₆ , м	Длина _ї прямолиней обноса, І _б , м	Боковая паруснос порожнем т, м ²	Лобовая парусност $F_{\mathbf{y}}^{, \ \mathbf{M}^3}$
1	2	3	4	5	6	7	8	9	10	11	12	13
Пассажирские												
Грузопассажирский дизель-электроход	20	"O"	2385	2068	121,4	16,8	2,44	2,18	5,0	53,0	1125	-
Грузопассажирский теплоход	588	"O"	1546	1228	95,8	14,3	3,42	2,05	4,3	46,0	845	135
Грузопассажирский теплоход	20-37	"O"	1473	1237	96,0	15,0	2,39	2,10	4,3	41	—	-
ирузопассажирский дизель-электроход	78 5	"O "	1000	825	80,2	14,0	1,9	1,6	3,15	44,0	593	
теплоход	860	"O"	863	705	77,0	15,2	1,45	1,22	3,4	47,0	62 9	100
Грузопассажирский теплоход	646	, M"	774	60 9	65,2	12,0	2,22	1,85	3,7	32,0	410	95
пассажирский двух- корпусный тепло- ход (катамаран)	P80	"M"	855	758	70,0	16,1	1,98	1,82	3,3	40,0	513	150
грузопассажирский теплоход	305	"M"	800	681	78,0	10,5	1,36	1,18	3,4	47,0	600	80
Грузопассажирский пароход	737 A, 737/205	"O" "P"	542	4 7 5	72,8	15,2	1,20	1,06	3,0	8,0		
Пассажирский двух- корпусный тепло-												
ход (катамаран) Озерный пассажир-	939	"P"	291	260	44,5	13,3	1,53	1,31	2,75	21,0	220	95
ский теплоход Пассажирский теп-	935	,"O"	191	158	45,0	7,0	1,52	1,34	2,5	23		-
лоход	780 623 1570 1630 623/252 日月P	`"O"	180	157	42,5	7,10	1,47	1,35	2,5	20	192	
Пассажирский теп- лоход	33/A	"P"	186	150	49,8	8,3	0,74	0,6	2,6	28	205	52
Тоже	P35 P51	"P" "P"	116 101	78 83	38,2 38,2	6,5 6, 5	1,22 1,13	0,97 0,80	1,7 1,7	$\frac{24}{24}$	305	64
"	839 A 544	"O" "P"	78 53	63 40	29,5 27,2	5,2	1,24 0,9	1,08 0,74	2,4 1,4	9 7	100 58	19 16
Пассажирский теп- лоход на подвод-												
ных крыльях "Ра- кета" Пассажирский теп-	3403	"O"	25	18	27,0	5,0	1,8	1,8	0,8	26	70	18
лоход на подвод- ных крыльях "Ме- теор"	34 2	"O"	52	33	34,6	9,5	2,3	2,3	1,6		115	
Пассажирский газо- турбоход на под- водных крыльях "Буревестник" Опытное пассажир-	1708	"O "	71	44	43,2	7,4	2,0	2,0		_	130	35
ское судно на воз- душной подушке типа "Сормович"	1872	"P"	37	25	29,2	11,3	0,37	0,32		14	102	3 5

Продолжение табл. 135

1	2	3	4	5	6	7	8	9	10	11	12	13
Пассажирский теп- лоход на воздуш- ной подушке типа												
"Горьковчанин", "Зарница"	1435	"Л"	14,6	9	2 2, 3	4,0	0,56	0,49	0,8	21	43	10
	Гру	7301	зые	сам	4 O X O	дни	ые					
Составный сухогруз-			[1	1	
зоподъемностью 10000 т Сухогрузный тепло-	1566	"O"	13360	4570	238,3	16,7	3,98	1,78	5,5	110+ 80	840 + 560	—
ход грузоподъем- ностью 5300 т	507Ан 507	" O"	6730	1267	140	16,6	3,5	0,74	5,5	105	750	185
ход грузоподъем- ностью 2700° т	2—95A 1557	"M" P ₁ 4C	4062 4097	1212 1263	114,0 114,0	13,2 13,2	3,44 3,50	1,12 1,17	5,5 5,5	90 90	780	155
Сухогрузный тепло- ход грузоподъем- ностью 2000 т	781 21—88	P₁¹C "O"	3121 2800	2338 1212	96,0 103,5	13,3 12,4	3,34 2,81	2,58 1,30	5,5 4,9	57 65	530	132 —
ход грузный тепло- код грузоподъем- ностью 2000 т	576	"O"	2740	1487	90,0	13,0	2,85	1,58	4,8	53	445	
ход грузоподъем- ностью	1810 двт	Л Р₁⁴С	2695	9 0 5	88,0	12,3	3,3	1,24	5,2			
ход грузный тепло- код грузоподъем- ностью 1300 т	936	"O "	1830	626	86,4	11,6	2,25	0,95	4,0	64	402	88
ход грузоподъем- ностью 1000 т	573	"O"	1503	813	80,4	11,0	2,25	1,31	3,5	55	.422	
сухогрузный тепло- ход грузоподъем- ностью 1000 т	Фин. 1000/800	"M"	1636	636	78,0	11,0	2,4	1,03	3,7	55	_	
сухогрузный двух- корпусный тепло- ход грузоподъем-	D 10	O "	1764	67	96.9	15.9	2.06	155	11	50	200	126
сухогрузный тепло- ход-площадка	P-19	"U	170.1	07	50,5	10,0	2,90	1,00	т,т	50	000	130
грузоподъемпо- стью 800 т Сухогрузный тепло-	P-40	"O"	1159	314	68,4	14,4	1,55	0,47	2,0	39	255	112
ход грузоподъем- ностью 700 т Сухогрузный двух- корпусный тепло-	276	"O "	1000	300	67,3	8,5	2,14	0,63	2,6	45	350	_
ход-площадка грузоподъемно- стью 600 т Сухогрузио-налив-	829	"O"	979	426	76,2	15,5	1,87	0,93	3,0	33		
ной теплоход гру- зоподъемностью 600 т	414Н и 414Б	"O"	828	217	65,0	10,4	1,50	0,45	2,0	46	288	90
Сухогрузный тепло- ход грузоподъем- ностью 400-600 т	765A	"O"	837	272	65,6	9,6	1,82	0,65	2,4	3	305	
Сухогрузный тепло- ход грузоподъем- ностью 300 т	8 98	"P"	414	107	52,3	7,3	1,37	0,38	2,2	38	169	
Сухогрузный тепло- ход грузоподъем- ностью 150 т	821	"P"	255	9 9	43	7,4	1,07	0,45	2,2	28	142	_

Продолжение табл. 135

1	2	3	4	5	6	7	8	9	10	11	12	13
Танкеры												
Танкер грузоподъем- ностью 5000 т	588 550	, M	6400	2880	132,6	16,9	3.52	1.64	1.98	89	800	200
Танкер грузоподъем- ностью 3000 т	587	"O"	4000	1690	110,2	13,4	3,30	1,44	4,8	86	66 6	440
танкеры грузо- подъемностью 1500 и 1000 т	1754А 1754Б	"P" "O"	$1783 \\ 2297$	570 736	86,7 88.3	13,0 13,0	1,9 8 2,52	0,67	2,5	49 50	_	
Танкер грузоподъем- ностью 600 т	P42	"O"	965	387	6 6 ,0	9,54	2,08	0,92	2,8	43	328	82
Грузы несамоходные												
Сборный состав гру- зоподъемностью 17000—1800 т на открытых баржах грузоподъемно-												
стью 2100 т Беспалубная баржа	1581	,0"	2364	307	57,8	14,0	3,5	0,56	4,8	48	130	-
грузоподъемно- стью 3000 т Баржа-площадка гру-	P-29	"O"	34 8 0	479	86,5	17,5	2,82	0,50	4,0	47	310	-
зоподъемностью 2800 т	P-56	"P"	3218	418	86,0	17,8	2,61	0,39	2,85	60	247	98
зоподъемностью 1700 т Унифицированная	459A	"P"	1973	273	79,3	15,0	2,03	0,38	2,5	65	203	
баржа-площадка грузоподъемностью 1000 т Унифицированная	942	"P"	1250	251	66,2	 14,0	1,57	0,36	2,0	34	196	50
баржа-площадка грузоподъемностью 600 т Унифицированная баржа-площадка	943	"P"	787	187	58,3	12,0	1,37	0,37	2,0	3 3	144	_
грузоподъемностью 300 т Наливная баржа гру-	9 44	"P"	409	109	46,5	10,0	1,10	0,33	2,0	16	76	
зоподъемностью 3000 т Надивная баржа гру-	P27	,3 P*	5060	458	111,2	20,5	2,60	0,25	2, 85	84	400	91
зоподъемностью 2050 т	459H	"3P,	2310	254	78,3	15,4	2,28	0,31	2,5	66		_
Толкачи — буксиры												
Толкач-буксир мощ- ностью 4000 элс	947	"O "	1106	861	52,3	13,8	3,06	2,6	4,3	41	369	150
Голкач-буксир мощ- ностью 2000 элс Толкач-буксир мош-	428	٥",	661	535	45,4	12,0	2,0	1,69	3,3	33		
ностью 800 элс Толкач-буксир мощ-	758AM	"O"	423	352	40,8	8,6	2,11	1,8	3,2	26	200	76
ностью 450 элс	P45A	"P"	216	193	32,2	7,8	1,41	1,29	2,7	18	—	
Примечание. Для сборного состава проекта 1581 характеристики даны по одной барже.												

ПОДБОР БУКСИРОВ-КАНТОВЩИКОВ ДЛЯ ОБЕСПЕЧЕНИЯ ШВАРТОВНЫХ ОПЕРАЦИЙ МОРСКИХ СУДОВ

Для нормальных условий маневрирования судна в процессе швартовных операций необходимо достаточное буксирное обеспечение, т. е. соответствующее число буксиров-кантовщиков определенной тяги и мощности.

Характер кантовочных операций и стесненные условия портовых акваторий обуславливают участие в кантовке судна при постановке его к

Рис. 171. График для определения тягового усилия буксира-кантовщика, необходимого для обеспечения швартовных операций.

причалу нескольких буксиров; однако, число их должно быть по возможности минимальным, так как это упрощает проведение швартовных операций, повышает их безопасность, надежность маневрирования и снижает стоимость. Наиболее быстрый и безопасный способ кантовки судов, соответствующий установившейся морской практике, — кантовка двумя бук-

сирами. В ряде случаев силы тяти двух буксиров заданной мощности может оказаться недостаточно, тогда приходится применять большее количество буксиров эквивалентной мощности.

Необходимая тяга буксира, обеспечивающего кантовку судна (или одной эквивалентной группы буксиров) определяется по графику, приведенному на рис. 171.

Пересчет тяги буксиракантовщика на мощность, потребную для обеспечения этой тяги, может быть выполнен по паспортным дан-

Рис. 172. График для определения необходимой мощности буксиров-кантовщиков для обеспечения швартовных операций 1-винтовые буксиры; 2-буксиры с крыльчатыми движителями.

ным об удельной тяге для данного типа буксира. Допускается мощность буксира (или суммарную мощность каждой маневровой группы) принимать по графику на рис. 172.

Для ледовых условий плавания потребная мощность буксиров должна приниматься в 1,2÷1,4 раза больше расчетной.
ОПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ ВОЛН, ПРЕДЕЛЬНЫХ ДЛЯ СТОЯНКИ ПРИШВАРТОВАННОГО СУДНА У ПРИЧАЛА

Определение значений элементов волн, предельных для стоянки у причала пришвартованного судна, рекомендуется выполнять при помощи графиков, строящихся по схеме, приведенной на рис. 173.

При построении этих графиков для заданных значений среднего в системе периода волн т, с, определяют:

предельные по крутизне средние в системе значения высот волн (их значения допускается принимать по рис. 174), по которым строят кривую 1;

Рис. 173. Схема построения графика для определения элементов воли, предельных для стоянки пришвартованного судна у причала а-зона безопасной стоянки судна; босограчиении эле-

бъ-безопасность судна или причала обеспечивается при ограничении элементов Волн, предельных для стоянки судна.

Рис. 174. График для определения предельных по крутизне элементов волн.

предельные по условиям безопасности для стоянки пришвартованного у причала судна значения высот волн, по которым строят кривую 2.

Стоянка пришвартованного судна у причала будет безопасной и не потребуется ограничений высот волн, если среднее значение периода воздействующих на судно волн $\tau < \tau_1$ (рис. 173). В случае $\tau \ge \tau_1$ необходим отход судна от причала ввиду нарушения условий безопасности и возможности аварии судна или причального сооружения.

При построении кривой 2 на рис. 173 предельные по условиям безопасности для стоянки пришвартованного судна у причала средние в системе значения высот волн \overline{h} , м, принимаются для каждого заданного значения $\overline{\tau}$, с, не более соответствующих по кривой 1 и наименьшими из определяемых:

по формуле

$$h = \frac{2\Delta_z}{\kappa \left(j + \frac{\eta_0}{\bar{A}}\right)},$$
390

где Δ_z — деформация отбойных устройств (и причального сооружения), соответствующая наименьшей из предельных нагрузок на причал, бортовое перекрытие судна или отбойное устройство при навале судна лагом или с рысканием (пояснения к п. 5.7),

или по формуле

$$\overline{h} = \frac{2\Delta_{\rm r}}{j\left(\varkappa_{\rm \zeta} + \pi \frac{B}{\overline{\lambda}} \varkappa_{\rm \theta} k_{\rm \theta}\right)}.$$
391

где Δ_T — запас глубины под килем на волнение, м, принимаемый в соответствии с нормами технологического проектирования морских портов; и_с — параметр вертикальной качки судна, определяемый по рис. 175, где ω_г собственная частота вертикальной качки, 1/с; В — ширина судна по миделю, м; \varkappa_{ψ} , \varkappa_{η} , \varkappa_{θ} , *ј* и k_{θ} — то же, что в формуле 132;

или по формуле

$$\overline{h} = \frac{\Delta_B}{j\pi \varkappa_{\psi} \frac{T}{\bar{\lambda}} \varkappa_{\theta} k_{\theta}},$$
392

где Δ_B — расстояние в поперечном направлении от скулы судна в положении на ровном киле при опирании на отбойные устройства до подводной части причального сооружения. м, принимаемое в соответствии с правилами технической эксплуатации гидротехнических сооружений и акваторий портов ММФ.

Рис. 175. График для определения величины коэффициента 2г.

Элементы волн, предельные для стоянки пришвартованного судна у причала, вносятся в паспорт сооружения и обязательное постановление по порту.

Пополнение 12

ХАРАКТЕРИСТИКИ ОТБОЙНЫХ УСТРОЙСТВ

В качестве расчетных характеристик отбойных устройств принимаются: тип, основные размеры отбойных устройств, их механические характеристики в виде графиков зависимостей между величинами деформации отбойного устройства, приложенной напрузкой и энергией деформа-

Таблица 136

ции; предельные для каждого отбойного устройства величины нагрузок, деформаций и энергии деформации.

Эти характеристики могут быть получены по паспортным данным, каталогам, справочникам, расчетным путем или по результатам испытаний отбойных устройств.

Основные расчетные характеристики наиболее распространенных типов отбойных устройств отечественного и зарубежного производства

Тип отбойного усгройства	Величина удельной на- грузки на борт судна, тс/м ²
Тип. V (Seiby, Japan) V 800H, V 1000H	79 77
Тип Cell (Bridgestone, Japan) C800H, C1000H	• 25 25

Тип отбойного устройства	Материал и форма аморти- затора	Способ монтажа	Стандартная длина L, м	Высота или диа- метр, ми	Macca, Tç
Д-300	Резиновый цилиндр	Подвеска на цепях или тросах	3,0	300	0,18
Д-400	То же	То же	2,0	400	0,22
П2Д 400 Пакет из 2 Д400	Пакет из двух цилиндров	7	2,0	400	0,44
П4Д400 Пакет из 4 Д400	Пакет из четы- рех цилиндров	79	2,0	900	1,0
А 3Д 300 Пакет из 3 Д 300 и 12 автопо- крышек	Пакет из трех цилиндров	n	3,0	1000	0,60
ДР Деревянный щит на 4 автопо- крышках	Автопокрышки	,	6,0	400	
	Резиновый цилиндр	"	2,0	800	0,91
(проект)	То же	То же	3,0	800	1,36
	, <u> </u>	, , , , , , , , , , , , , , , , , , , ,	4,0	800	1,82
	»	77	2,0	1000	1,42
Д1000 (проект)	*	,	3,0	1000	2,13
	"	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4,0	1000	2,84
	19	*	2,0	1200	2,06
Д1200 (проект)	"	**	3,0	1200	3,09
	27	"	4,0	1200	4,12

Таблица 137

-					······································
	Величина пре- дельной дефор- мации д, мм	Энергия дефор- мации $E_{\rm i},$ тс.м	Реакция при сжатни H_{χ} , тс	Удельное давле- ние на борт <i>q</i> , <i>r</i> ¹ и тс/м ³	Схема установки на причаде
	180	4,5	170	135	<i>≤0,8</i>
	240	5,6	155	138	0,24 M
	240	11,2	310	138	≤Q,8M Q,7M
	480	22,4	310	138	
	565	16,0	200	70	£ 1,1 M 1 @
	135	2,4	112	20	<i>≤1,5</i> M
	400	8,6	49	30	
	400	12,0	73	30	
	400	17,2	98	30	
	500	13,0	61	30	
	500	20,0	91	30	<i>≤1,1M</i>
	500	26,0	122	30	<u> </u>
	600	19,0	73	30	£12m _ []
	600	29,0	109	30	
	600	38,0	146	30	R R

Тип отбойного устройства	Материал и форма	Способ, установки	Стандартная длина L, м
Bridgestone, Япония цилиндр 30×15"	Полый резино- вый цилиндр	Подвеска на цепях	4,6
То же, 40×20"	То же	То же	4,60
То же, 48×24″	, 7	,	4,60
Bridgestone C 800H Cell	"	Жесткое креи- ление на болтах	1,05
То же, С1000Н	•	То же	1,30
Seiby Chem C _o Япония V 600H	Резиновая полая трапеция	9	1,5; 2,0; 2 ,5
То же, V 800H	То же	27	2,5; 3,0; 3,5
То же, V 1000Н	р	79	2,5; 3,0; 3,5
• Bridgestone Япония Supper Arca SA600H		-	2,0; 2,5; 3,0
То же, SA 80011	,		2,0; 2,5; 3,0
То же, SA 1000H	"	77	2,5; 3,0; 3,5
Iokohama Япония I 1500×3000	Пневматический цилиндр	Плавучий	3,0
То же I 1700×3000	"	77	3,0
То же I 2000×3500		17	3,5
То же I 3300×6500	"		6,5

приведены соответственно в табл. 137 и 138, а соответствующие им графики механических характеристик — на рис. 177—186.

Для определения интенсивности нагрузки от отбойных устройств на бортовые перекрытия судов можно воспользоваться графиком на рис. 176, где приведена зависимость ширины площадки контакта от деформации отбойного устройства трубчатого сечения; интенсивность нагрузки вычисляется как отношение силы реакции отбоя к соответствующей площади контакта (на длине отбойного устройства). Для отбойных устройств, имеющих фиксированную площадку контакта, интенсивность нагрузки определяется аналогичным образом; для некоторых отбоев она приведена в табл. 136.

Пример 86. Причал № 4 Широкого пирса, показанного на рис. 100 (пр.имер 27), был в соответствии с проектом оснащен отбойными устрой-

Таблица 138

Высота или днаметр, мм	Масса, тс	Предельная деформация Δ. мм	Энергия деформации Е ₁ , тс.м	Реакция при сжатии <i>Н</i> _x , тс	Схема конструкции аморти- затора
762/381	1,72	381	17	95	a luur
102 0 /510	3,06	510	30	127	
1220/610	4,40	610	44	148	2
800	0.44	400	8	27,5	Recel 1111
1000	0,81	500	16	42,0	
600	-	270	13; 18; 22	65; 88; 120	1/1/1/
800	-	360	40; 47; 56	145; 175; 203	
1000	—	450	63; 78; 9 0	185; 2 2 5; 260	H_
600	1,0; 1,2; 1,5	270	18; 22; 27	90; 112; 134	h
800	1,8; 2,2; 2,6	360	32; 40; 48	120; 150; 179	
1000	3,4; 4,0; 4,3	450	63; 75; 88	187; 224; 262	<u> </u>
1500	0,79	750	12	50	
1700	0,95	850	14	56	
2000	1,6	1 0 00	26	64	
3300	2,94	1650	125	204	

ствами типа АЗД300 (табл. 76 в примере 27) и рассчитан на поперечную нагрузку от навала судна при швартовке $H_x = 183$ тс (табл. 77). В процессе эксплуатации причал был переоснащен более совершенными отбойными устройствами типа Д1000 длиной 3,0 м.

Определить допускаемую величину скорости подхода расчетного судна (балкер полным водоизмещением 120 тыс. тс в балластном состоянии загрузки при подходе к причалу) после реконструкции.

Решение.

1. Для расчетного судна с ледовыми подкреплениями по категории \mathcal{J}_2 (табл. 72) предельное значение нагрузки может достигать $119 \times 3 = 357$ тс.

Рис. 176. График зависимости ширины площадки контакта отбойного устройства ΔS_x и поперечного размера деформированного отбоя S_x от относительной его деформации Δ/x для цилиндрических отбойных устройств трубчатого сечения при отношении внутреннего и наружного диаметра 1:2

a-схема деформации отбоя; $\delta-$ графики зависимости $\Delta S_{x}/x$ (1) и S_{x}/x (2) от значения Δ/x .

Рис. 177. График зависимостей реакции H_x и энергоемкости E цилиндрических амортизаторов Курского завода РТИ от величины деформации Δ для одного цилиндра типа I-400; 2-Д300.

Рис. 178. Механические характеристики комбинированных отбойных устройств из резиновых амортизаторов 1-пакет 2Д400; 2-пакет 4Д400; 3-блок АЗД300.

Рис. 179. График зависимостей реакций H_x и энергоемкости E цилиндрических резиновых отбойных устройств от величины деформаций Δ для цилиндра длиной 1,0 м типа 1-Д600; 2-Д2:С0; 3-Д1000; 4-Д1200.

Рис. 180. Характеристика амортизаторов из автопокрышек ГОСТ 8407-63, заполненных раскроем резины (значения в скобках относятся к амортизатору типа ДР из деревянного щита и 4 автопокрышек).

Рис. 181. График зависимости реакции (сплошная линия) и энергоемкости (пунктир) резиновых амортизаторов Д300 от величины деформации при осевой нагрузке

1-отрезок длиной 300 мм; 2-отрезок длиной 450 мм; 3-отрезок длиной 750 мм.

Рис. 182. Механические характеристики амортизаторов типа Bridgestone-цилиндр а-зависимость нагрузки от деформации; б-зависимость энергии от де-формации,

Рис. 183. Характеристики отбойных устройств типа Cell.

Рис. 184. Характеристики отбойных устройств типа V1000H, V800H.

7

По табл. 137 предельная нагрузка на трехметровый отбой типа Д1000 составляет 91,0 тс. Эта нагрузка, как наименьшая, определяет ограничения скорости подхода судна к причалу.

2. В соответствии с характеристиками отбойных устройств типа Д1000 (табл. 137) такой нагрузке (91 гс) соответствует энергия деформации $E_1 = 20,0$ гс · м.

Соответственно этому допускаемая величина нормальной к лицевой поверхности сооружения скорости подхода судна к причалу по формуле 143 (109)

$$v_{\text{gom}} = \sqrt{\frac{2 \cdot 9,81 \cdot 20}{0,47 \cdot 72 \cdot 10^5}} = 0,107 \text{ m/c}.$$

Пример 87. Определить нагрузку от навала при подходе танкера типа «Крым» на причальное сооружение, расположенное на открытом океанском побережье. Схема сооружения представлена на рис. 187. Рас-

Рис. 187. Плановое расположение причала, схематические разрезы по нему и схема расчетного случая швартовки

1 и 2-соответственно крайний и средний палы причала; 3-судно, ошвартованное у причала; 4-положение судна при расчетном случае швартовки; 5-буксиры-кантовщики.

смотреть варианты оснащения причала отбойными устройствами и определить предельные элементы волн для стоянки судна у причала при фронтальном подходе волн.

Расчетные характеристики судна:

Водоизмещение танкера D=180 тыс. тс; длина наибольшая $L_{\rm H6}=$ =295,2 м; длина между перпендикулярами $L_{\rm mm}=277,1$ м; ширина наибольшая B=45,0 м; высота борта $H_6=25,4$ м; осадка в полном грузу T=17,0 м; водоизмещение полное D=181200 тс; коэффициент полноты водоизмещения $\delta=0,83$, категория ледовых подкреплений — \mathcal{J}_3 .

Расчетное водоизмещение судна принято равным полному водоизмещению судна за вычетом веса запасов, израсходованных на одном плече рейса.

Энергия навала судна на причал при подходе к сооружению

Величину энергии навала определяем по формуле 135(106).

Нормальная к лицевой поверхности сооружения, окорость подхода судна определяется по табл. 60 (22)

По табл. 61 (23) коэффициент v=1,6, если рассматривать крайние палы причала как головные, или v=0,65, если рассматривать эти палы в качестве рядовых.

В соответствии с пояснениями к п. 5.8 гл. СНиП, в частности, в соответствии с расчетными схемами навала судов по рис. 90, находим, что величина v = 1,6 соответствует схеме на рис. 90, *s*, а величина v = 0,65 схеме на рис. 90, *a*. В нашем случае оба они нереальны: схема навала по рис. 90, *s*, т. е. при $l_{\varphi} \approx 0$ будет соответствовать практически аварийному случаю швартовки, когда ошибка в постановке судна к причалу относительно его середины будет более 70 м — при навале на наиболее удаленный от центра тяжести судна пал точка контакта борта судна с отбоями будет находиться в той части корпуса судна, где из-за значительного развала шпангоутов произойдет навал на кордонную часть причала, не защищенную отбоями; навал по схеме рис. 90, *a* нельзя рассматривать в качестве расчетного, так как ввиду небольшой, по сравнению с длиной судна, протяженностью причального фронта возможно значительное уменьшение величины l_{φ} по сравнению с этим случаем.

Поэтому рассчитаем величину коэффициента v для случая навала по схеме рис. 90, б в соответствии с формулой 134. При этом:

 $v_{\rm g} = 0.8; v_{\rm e} = 1.0; k_m = 3.44$ по табл. 62 при $\frac{T}{H} = \frac{17}{20} = 0.85;$

 $l_{\theta} = 3,5$ м по формулам 380 и 383, табл. 129 при $\xi = 0,65$ и $l_0 = 3,0$ м.

р₀ = 18,0 м по формуле 384, табл. 129 при C = 0,80;

р_ф = 89,0 м по графику в табл. 129.

Величина l_{φ} определяется по принятой схеме швартовки, приведенной на рис. 187, в соответствии с пояснениями к п. 5.8 таким образом, чтобы за период эксплуатации сооружения (25 лет) расчетная энергия навала была реализована не более одного раза. Такое решение определяется тем, что причал находится в сложных условиях эксплуатации и предназначен для переработки груза первой категории (сырая нефть).

Пусть по технико-экономическим расчетам ожидаемое количество швартовок расчетного судна составляет порядка 10 в год. Тогда за период экоплуатации следует ожидать до 250 случаев подхода расчетного судна к причалу; следовательно, вероятность реализации расчетной энергии навала должна быть не более 1/250=0,004.

Поскольку предполагается производить швартовные операции с расчетным судном лишь при нормальных условиях эксплуатации (ветер силой не более 6—7 баллов, волнение моря не более 2 баллов, наблюдаемая скорость течения на акватории не более 0,3 м/с), то достаточно рассматривать случай подхода судна с нормативной скоростью по табл. 60 (22), т. е. v=0,08 м/с; обеспеченность такой скорости в соответствии с графиком, приведенным на рис. 91, составит 0,1. Характеристики буксирного обеспечения для швартовки такого судна определяются по дополнению 10, рис. 171 и 172; необходимо применять буксиры (или эквивалентные группы буксиров) с усилием тяги не менее 52 тс и мощностью 3,7 тыс. л. с. (для винтовых буксиров-кантовщиков).

Поэтому величину l_{φ} при вычислении значения коэффициента v следует принимать такой, чтобы вероятность смещения миделя судна относительно середины причала была не менее 0,004/0,1=0,04. В соответствии с графиком, приведенным на рис. 91, такой обеспеченности соответствует значение $\Delta \mathfrak{A}/L_{nn} = 0,126$; следовательно, $\Delta \mathfrak{A} = 0,126 L_{nn} = 0,126 \cdot 277,1 = 35$ м.

В соответствии с табл. 129 смещение центра тяжести относительно миделя $x_{\varphi} = 0$, т. е. центр тяжести судна также будет смещен относительно середины причала на 35 м.

Поэтому, если расстояние крайнего отбоя на крайнем пале от середины причала составляет 85 м, то

$$l_{\bullet} = 85 - 35 = 50 \text{ M}.$$

Следовательно,

$$v = 0.8 \cdot 1.0 \frac{1}{\frac{1}{3.44} + \left(\frac{3.5}{18}\right)^2 + \left(\frac{50}{89}\right)^2} = \frac{0.8}{0.291 + 0.320 + 0.038} = \frac{0.8}{0.649} = 1.23.$$

Тогда величина энергии навала на крайний пал причала по формуле 135 (106)

$$E_{\rm H} = 1,23 \, \frac{180 \cdot 10^3 \cdot (0,08)^2}{2 \cdot 9,81} = 72,2 \, {\rm tc} \cdot {\rm m}.$$

Ввиду того, что прямолинейная часть борта судна перекрывает все четыре пала даже при смещении центра тяжести судна относительно середины причала, величину энергии навала на средний пал необходимо определять из условия навала судна лагом на все четыре пала одновременно, когда при $l_{\varphi} = 0$ энергия навала будет наибольшей. В этом случае энергия навала на все четыре пала:

$$E_{\rm h} = 0,8\cdot 1,0 \ \frac{1}{\frac{1}{3,44} + \left(\frac{3,5}{18}\right)^2} = 142,5 \ {\rm tc}\cdot{\rm m},$$

а на один средний пал — $\frac{142,5}{4} = 35,7$ тс·м.

Следовательно, для расчета принимаем: энергия навала на крайний пал причала $E_{\rm H}$ =72,2 тс · м; энергия навала на средний пал причала $E_{\rm H}$ =35,7 тс · м.

Tahanna 130

Варианты оснащения причала отбойными устройствами

По данным табл. 137 и 138 рассмотрим два варианта оснащения причала отбойными устройствами:

вариант 1 — отбоями «супер-арка» фирмы «Bridgestone», Япония, SA 1000H, L = 3,5 м из резины (данные приведены в табл. 139);

вариант 2-отбоями типа Д 1000, L=4,0 (данные приведены в табл. 140).

									•
Палы причала	Тип отбойного устройства	Длина отбойного устройства L, м	Энергия деформации одного отбойного устройства, E., тс.м	Количество отбойных устройств, шт.	Палы причала	Тип отбойного устройства	Длина отбойного устройства, L, м	Энергия деформации одного отбойного устройства E_1 , тс.м	Количество отбойных устройств, шт.
Крайние Средние	SA 1000H SA 1000H	3,5 3,5	88,0 88,0	1 1	Крайние Средние	Д1000 Д1000	4,0 4,0	26 26	$\frac{3}{2}$

Величины нагрузок от навала судна при подходе к сооружению

Величины нагрузок от навала танкера «Крым» при подходе к сооружению в полном грузу, поперечную H_x , тс, и продольную H_y , тс, определяем по указаниям п. 5,9.

Поскольку в конструкции причала применены жесткие козловые опоры, энергией деформации сооружения пренебрегаем, и величину нагрузки H_x определяем непосредственно по характеристикам соответствующих отбойных устройств. Результаты расчета представлены в табл. 141. Поскольку навал происходит частью корпуса в пределах прямолинейной его части, распределение энергии навала между всеми отбоями пала принимаем равномерным. Полученные нагрузки меньше предельных по прочности бортового перекрытия судна (табл. 133); следовательно, выбранные (табл. 139, 140) отбойные устройства применимы для оборудования причала.

Определение элементов волн, предельных для стоянки пришвартованного судна у причала

Предельные элементы волн для стоянки судна у причала определим по рекомендациям, приведенным в дополнении 11 только для варианта оснащения причала отбойными устройствами SA 1000H. Из анализа схем

Таблица 141

		В		Вариант 2							
Пал причала	Энергия навала на пал, Е _н , тс.м	Тип отбоя	Количество отбо- ев на пале	Реакция одного отбоя, H_{x} , тс	Нагрузка на пал, H_{x} , тс	Нагрузка на пал, Н _у , тс	Тип отбоя	Количество отбо- ев на причале	Реакция одного отбоя, Н _X , тс	Harpyska na na n , H_{x} , rc	Нагрузка на пал, Н _у , тс
Крайний	72,2	SA 1000H	1	262	262	131	д1000	3	112	336	168
Средний	37,7	L = 3,3	1	140	140	70	L = 4 M	2	96	192	96

навала судна на причал найдено, что определяющим является навал судна на крайние палы. Помимо этого необходимо выполнить условия 391 и 392. В соответствии с табл. 141 нагрузка на крайний пал не должна превысить величину 262 тс. Определив соответствующую этой нагрузке де-

формацию отбоя (Δ_z) , подставляем ее значение в формулу 390 и строим кривую 3 на рис. 188 по схеме рис. 173; для построения кривых 1 и 2 принимаем соответственно $\Delta_{\rm B}$ =1,0 и $\Delta_{\rm T}$ =1,5 м.

При выполнении расчетов принимаем, что $l_{\varphi} = 70$ м, так как продольные перемещения судна при фронтальном подходе волн будут отсутствовать; остальные величины, входящие в расчетные формулы, принимаем прежними (за исключением k_m , принимаемого по табл. 58); значения $\frac{\eta_0}{\overline{A}}$ определяем по рис. 83, а значение \varkappa_{ζ} — по рис. 175, величину C_0 для отбойного устройства SA 1000H длиной 3,5 м определяем по графику 1, приведенному на рис. 185.

$$C_0 = \frac{40}{0.1} \cdot 3.5 = 1400 \text{ rc/m}.$$

Ввиду больших размеров судна, амплитуды качки невелики при рассмотренных элементах волн, и предель-

ные значения элементов волн для стоянки судна у причала определяются величинами нагрузок от навала под действием волн; ограничения 391 и 392 могут быть рассмотрены только при очень больших длинах волн.

Пример выполненных вычислений приведен в табл. 142 (кривая 3).

Таблица 142

τ, c	$\frac{B\sigma^2}{g}$	^k m	v	<i>۷</i> ,	ہ ج	<u>ννσ</u> ω	$\frac{\eta_0}{\overline{A}}$	$j + \frac{\eta_0}{\overline{A}}$	ħ
4	11,3	1,72	0,59	0,77	2,75	2,12	$1,10 \\ -0,50 \\ -0,70 \\ -0,82 \\ -0,81 \\ -0,81 \\ -0,82$	3,52	
6	5,04	1,74	0,59	0,77	1,84	1,42		1,92	1,40
8	2,83	1,86	0,60	0,78	1,38	1,07		1,72	0,86
10	1,81	2,12	0,64	0,80	1,10	0,88		1,60	0,68
12	1,24	2,34	0,66	0,81	0,91	0,74		1,62	0,51
14	0,93	2,52	0,68	0,82	0,79	0,65		1,61	0,40
16	0,70	2,69	0,70	0,84	0,68	0,57		1,60	0,23

Дополнение 13

УПРОЩЕННЫЕ СПОСОБЫ ОПРЕДЕЛЕНИЯ НЕКОТОРЫХ ВИДОВ ВОЗДЕЙСТВИЯ ЛЬДА НА ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ

Наибольшие ледовые нагрузки, как правило, наблюдаются при воздействии на сооружения движущихся ледяных полей и прорезании зажорных масс льда.

В тех случаях, когда помимо этих видов воздействия льда возможны и другие, величина нагрузки может быть ориентировочно определена предлагаемыми ниже упрощенными способами. Если при этом величина окажется большей, чем от воздействия дрейфующих ледяных полей и зажорных масс льда, необходимо провести более точное определение ее по формулам, приведенным в разделе 6 главы СНиП II-57-75.

Нагрузка от навала ледяного поля (п. 6.6)

Равнодействующая нагрузка от навала остановившегося у сооружения ледяного поля при наличии течения воды и ветра определяется, как

Рис. 189. Номограмма для определения нагрузки при навале остановившегося ледяного поля у сооружения.

302

ранее изложено, по формуле 160(125). Подставив соответствующие коэффициенты, можно эту формулу записать в следующем виде:

$$P_{7} = \left[\left(0.5 + 50 \frac{h_{\Lambda}}{L_{\Lambda}} \right) v_{B}^{2} + 2 \cdot 10^{-3} W_{M}^{2} + h_{\Lambda} l_{\Lambda} \right] 10^{-3} \Omega.$$
 393

Для ориентировочных расчетов величиной $h_n i_n$ можно пренебречь, так как $i \approx 0$, тогда последнее выражение примет вид:

$$P_{\eta} = \left[\left(0.5 + 50 \frac{h_{\pi}}{L_{\pi}} \right) v_{B}^{2} + 2 \cdot 10^{-3} W_{M}^{2} \right] 10^{-3} \Omega, \ \tau c/M^{2}.$$
³⁹⁴

Расчеты по этой формуле можно свести к пользованию номограммой, приведенной на рис. 189. Номограмма поэболяет вычислить значения члена, находящегося в скобках при различных сочетаниях скоростей течения $v_{\rm B}$ (от 0 до 3 м/с) и ветра $W_{\rm M}$ (от 0 до 30 м/с) при значениях $\frac{h_{\pi}}{L_{\pi}} = 0,001$; 0,005; 0,01; 0,05; 0,1. Для промежуточных значений $\frac{h_{\pi}}{L_{\pi}}$ данные номограммы могут быть интерполированы.

Пусть, к примеру, требуется определить величину нагрузки от навала при $v_{\rm B}$ =1,25 м/с, $W_{\rm M}$ =10.м/с, $\frac{h_{\pi}}{L_{\pi}}$ =0,05, Ω =6·10³ м². На соответствующих осях номограммы ($W_{\rm M}$ и $v_{\rm B}$ при $\frac{h_{\pi}}{L_{\pi}}$ =0,05) откладываем значения 1,25 и 10; соединяя эти точки, получаем на оси нагрузок величину, равную 4,8 тс/м². Подставляя это значение в формулу 393, получаем величину нагрузки P_7 =4,8·10⁻³·6·10³=29 тс.

Нагрузка на сооружения при температурном расширении ледяного покрова (п. 6.7).

Величина нагрузки при этом виде воздействия льда при $S < 2\%_0$ определяется, как ранее изложено, по формуле 165 (130).

Для выполнения приближенных расчетов по этой формуле построен график (рис. 190), по которому определяются значения *p* при отсутствии снега на льду. При наличии снега следует умножать данные графика на коэффициент *k*₀, принимаемый по табл. 143.

Пусть, например, требуется определить величину нагрузки от температурного расширения ледяного покрова при $t_{\rm H}$ = = -35°C; v=1,5°C/ч; $h_c=0,15$ м; L>150 м; h_t = = 1,0 м.

С рис. 190 снимаем величину нагрузки, рав-

Рис. 190. График для определения нагрузки на сооружение при температурном расширении ледяного покрова без учета слоя снега на льду.

Таблица 143

h _c , м	0,05	0,10	0,20	0,30	0,50
k _c	0,70	0,50	0,16	0,02	0

ную 19 тс/м², при $t_{\rm H}$ = --35° С и v = 1,5° С/ч. По табл. 143 при $h_{\rm c}$ = 0,15 $k_{\rm c}$ = 0,33. Используя эти значения, получаем

 $q = 19 \cdot 0,33 \cdot 1 = 6,3 \text{ tc/m}.$

Воздействие примерзшего к сооружению ледяного покрова при изменении уровня воды (пп. 6.12 и 6.13)

Для ориентировочного определения воздействия примерзшего к сооружению ледяного покрова при изменении уровня воды используется график, приведенный на рис. 191, по которому находят безразмерную функцию времени Φ по заданным значениям температуры воздуха $t_{\rm n}$ и времени деформации ледяного покрова τ_1 .

Рис. 191. График зависимости $\Phi = f(t_{\rm H}, \tau_{\rm I}).$

Так, пусть требуется определить значения изгибающего момента Mи вертикальной нагрузки P_{10} от примерзшего льда к вертикальной стене (при подъеме уровня воды) при $h_t = 1,0$ м; $t_{\rm H} = -10^{\circ}$ С; u = 0,006 м/ч; $\tau_1 = 50$ ч; B = 1,0 м. По рис. 191 при заданных значениях τ_1 и $t_{\rm H}$ находим $\Phi = 22,0$. Подставляя числовые значения в формулы 178(143) и 176(141), получаем:

$$M = 200 \cdot 1 \cdot 0,006 \cdot 50 \sqrt{\frac{1}{22}} = 12.8 \text{ tc} \cdot \text{m}$$
$$P_{10} = 20 \cdot 1 \cdot 0,006 \cdot 50 \sqrt[4]{\frac{1}{22}} = 2.7 \text{ tc}.$$

УТОЧНЕНИЕ РАСЧЕТНЫХ ЭЛЕМЕНТОВ ВОЛН И ВОЛНОВЫХ НАГРУЗОК ПО ДАННЫМ НАТУРНЫХ НАБЛЮДЕНИЙ

В соответствии с требованиями, приведенными в п. 1.3 главы СНиП II-57-75, необходимо в некоторых случаях уточнять расчетные элементы волн и волновые нагрузки на основе данных натурных наблюдений и лабораторных исследований.

Такие уточнения рекомендуется производить в следующем порядке: выполняют цикл натурных наблюдений волн или волновых нагрузок, содержащий регистрацию порядка десяти штормов и более различной силы; измерения выполняются с помощью самописцев;

определяют по полученным записям элементы волн или волновых нагрузок требуемой обеспеченности в системе; эти измерения сопоставляют с вычисленными по требованиям главы СНиП II-57-75;

вводят поправки в значения элементов волн или нагрузок для расчетного шторма, осли систематические отклонения измеренных величин от расчетных составляют 10% и более.

Пример 88

Требуется уточнить для расчетного шторма высоту волны h_i и период т, используя данные натурных наблюдений

Значения измеренных и расчетных элементов волн представлены в табл. 144. Измеренные значения элементов волн отвечают моментам максимального развития штормов.

Решение

Согласно данным табл. 144 наблюдается систематическое отклонение вычисленных периодов и высот волн от измеренных в сторону уменьше-

Дата измерений	Измеј велн	ренные чины	Вычис вели	л енные ч ины	Отклонение вычисленных величин от измеренных, %		
	Ŧ	h _{1%} , м	ĩ	<i>ћ</i> 1%, м	Ŧ	h1%, м	
1/IV 1973 8/IV 1973 25/IV 1973 6/VIII 1973 12/IX 1973 28/IX 1973 3/X 1973 4/IV 1974 5/VIII 1974 14/IX 1974 22/X 1974	4,1 3,2 5,3 6,6 4,4 7,0 3,2 3,4 5,1 6,3 5,2	2,2 1,4 4,3 3,2 2,2 5,4 1,2 1,5 3,3 2,7 3,9	3,6 2,8 4,5 6,5 4,6 5,7 2,9 3,1 4,1 5,8 4,6	1,9 1,2 4,0 2,8 2,2 5,2 1,6 2,8 2,8 3,8	$-12 \\ -13 \\ -15 \\ -2 \\ +4 \\ -19 \\ -9 \\ -9 \\ -20 \\ -8 \\ -12$	$-14 \\ -14 \\ -7 \\ -13 \\ 0 \\ -4 \\ 0 \\ +7 \\ -15 \\ +4 \\ -3$	
Расчетный шторм			9, 2	8,5			

Таблица 144

ния. Средние отклонения: для периодов $\sim 10\%$, для высот $\sim 5\%$. Поэтому вводим в средний период для расчетного шторма соответствующую поправку, а расчетную высоту волны оставляем без изменений (поправка менее 10%). Окончательно получаем:

$$\bar{\tau} = 9,2 \cdot 1,1 = 10,1 \text{ c}; h_{1\%} = 8,5 \text{ m};$$

Пример 89. Требуется уточнить для расчетного шторма нагрузки P_{xr} и P_{xn} (п. 2.3) от стоячих волн на сооружение вертикального профиля с учетом данных натурных измерений соответственно при подходе гребня и подошвы волны. Значения нагрузок представлены в табл. 145. Таблица составлена по регистрациям 70 штормов за период 1969—1974 гг. на морской грани глубоководного оградительного мола (скорости ветра 5—27 м/с). В таблице помещены значения нагрузок однопроцентной обес-

печенности в системе волн, осредненные по параметру $\frac{H}{2}$.

uua 1	45
-------	----

H	Измеренны (осреда	е величины ненные)	Вычисл	енные	Отклонение вычисленных величин от из- мереиных, %		
$\overline{\lambda}$		Р.,, тс/м	Р, тс/м	<i>Р</i> , тс/м			
		<i>x</i> 11 [.]	<i>x</i> r.	<i>x</i> n	Р _{хг}	Рхп	
0,40 0,30 0,20 0,15	10,4 5,1 19,6 17,8	8,6 4,0 15,1 13,8	13,5 5,6 22,6 23,2	10,8 6,7 21,3 22,2	$^{+30}_{+10}_{+15}_{+30}$	+37 +67 +41 +61	
Расчетный шторм	_		37,2	30,5		_	

Решение

Согласно данным табл. 145 наблюдается систематическое отклонение вычисленных величин от измеренных в сторону увеличения. Средние отклонения — для $P_{xr} \sim +21\%$, для $P_{xu} \sim +51\%$ — превышают 10%; поэтому вводим для расчетного шторма поправки:

 $P_{xT} = 37.2 \text{ tc/m} (1 - 0.21) \approx 29 \text{ tc/m}; P_{xT} = 30.5 \text{ tc/m} (1 - 0.51) \approx 15 \text{ tc/m}.$

Дополнение 15

ОПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ ВОЛН С УЧЕТОМ ВЛИЯНИЯ ТЕЧЕНИЯ

Высоту $h_{\rm T}$ и длину волн $\overline{\lambda}_{\rm T}$ в мелководной зоне с учетом влияния течения — попутного и противоположного направлению распространения волн — определяют по формулам:

1

$$h_{\rm T} = k_{\rm TB} h_i, \qquad 395$$

где

$$k_{\rm TB} = \sqrt{\frac{1}{1 \pm 3.5 \frac{v_{\rm T}}{\overline{c}}}},$$
397

$$k_{TA} = 1 \pm \frac{v_T}{c}, \qquad 398$$

 h_i , м, — высота волн *i*-й обеспеченности, без учета течения; $\overline{\lambda}$, м, — средняя длина волн без учета течения; \overline{c} , м/с, — средняя фазовая скорость волн, определяемая по формуле

$$\overline{c} = \frac{\overline{\lambda}}{\overline{\tau}}.$$
 399

В формулах 397 и 398 знак плюс соответствует попутному течению, знак минус — течению, противоположному направлению распространения волн.

Пример 90. Требуется определить высоту волн $h_{\rm T}$ и длину $\bar{\lambda}_{\rm T}$ с учетом влияния течения со скоростью $v_{\rm T}=2$ м/с, противоположного направлению распространения волн. Элементы волн без учета течения равны: $h_{1\%} = 3,0$ м, $\bar{\lambda} = 60$ м, $\bar{\tau} = 3,8$ с. Глубина водоема $H < 0,5\bar{\lambda}$.

Решение

По формулам 399, 397 и 398 определяем значения

$$\overline{c} = \frac{60}{3,8} = 15,8$$
 m/c,

$$k_{\text{TB}} = \sqrt{\frac{1}{1-3.5\frac{2}{15.8}}} = 1,33, \ k_{\text{TA}} = 1 - \frac{2}{15.8} = 0.87.$$

Высоту и длину волн с учетом влияния течения вычисляем по формулам 395 и 396:

$$h_{\rm T} = 1.33 \cdot 3.0 = 4.0$$
 M, $\bar{\lambda}_{\rm T} = 0.87 \cdot 60 = 52$ M.

Дополнение 16

ОПРЕДЕЛЕНИЕ ПОТЕРЬ.И ПРИРАЩЕНИЙ ВОЛНОВОЙ ЭНЕРГИИ НА ОГРАЖДЕННОЙ АКВАТОРИИ

Высоту дифрагарованной волны с учетом потерь и приращений волновой энергии $h_{\pi cn}$, м, необходимо определять по формуле:

$$h_{\rm ACR} = k_{\rm A} k_{\rm CR} h_i, \qquad 400$$

где k_{π} — коэффициент дифракции волн, определяемый согласно требованиям, приведенным в пп. 24, 25 и 26 приложения 1; $k_{e\pi}$ — суммарный коэффициент потерь (приращений) волновой энергии, определяемый по формуле

$$k_{\rm cn} = \sqrt{1 - \frac{E_{\rm a} - E_{\rm B}}{E}},$$
 401

Рис. 192. График для определения-придонной скорости v_д.

 h_i — высота исходной волны *i*-й обеспеченности; E_{π} , кг/м — потери энсргии под влиянием шероховатости дна; $E_{\rm B}$, кг/м — приращение удельной энергии под действием местного ветра; $E = \frac{1}{8} \gamma h_i^2$ — удельная энергия на входе.

Потери удельной волновой энергии E_{π} следует определять по формуле

$$E_{\mu} = \frac{C_{\mu}\rho r}{2\overline{c}} v_{\mu}^{3}, \qquad 402$$

где C_{μ} — гидродинамический коэффициент сопротивления, принимаемый по табл. 146; $\rho = 101,9$ кг · с²/м⁴ — плотность воды; r, м — расстояние от входа до расчетной точки; v_{μ} , м/с — придонная волновая скорость, принимаемая по рис. 192; $c = \lambda/\tau$ — фазовая скорость волн.

Таблица 146

Крупность	Гидродинамический коэффициент сопротивления $c_{\rm д}$							
частиц дна <i>4</i> ф, мм	0,1 и менее	0,25	0,5	0,75	1	1,25	1,5	
2 1 0,75 0,5 0,25 0,1	0,22 0,18 0,14 0,11 0,08 0,05	0,17 0,15 0,12 0,08 0,065 0,03	0,08 0,045 0,035 0,027 0,022 0,015	0,032 0,022 0,02 0,019 0,018 0,014	0,022 0,02 0,015 0,018 0,016 0,013	0,02 0,018 0,016 0;015 0,014 0,012	0,019 0,016 0,015 0,014 0,013 0,01	

Приращение удельной волновой энергии следует определять по формуле

$$E_{\rm B} = \frac{c_{\rm B}\rho_{\rm B}r}{2\bar{c}} (W\cos\alpha' - \bar{c})^3, \qquad 403$$

где $\rho_{\rm B}$ = 0,125 кг · с²/м⁴ — плотность воздуха; α' , град — угол между направлением ветра и лучом дифрагируемой волны в расчетной точке; $c_{\rm B}$ — аэродинамический коэффициент сопротивления, принимаемый по табл. 147, где значение коэффициента $k_{\rm BH}$ (относительной шероховатости взволнованной поверхности) следует определять по формуле

$$k_{\rm BH} = \frac{(W \cos \alpha' - c)^2}{2gh_{\rm Ay}\sqrt[4]{h_{\rm Ay}/\overline{\lambda}}}.$$

Таблица 147

k _{вп}	18 и менее	28	48	100	200
c _B	0,003	0,002	0,002	0,0005	0,0002

В формуле 404 $h_{дy}$ — условная высота дифрагированной волны по направлению от входа до рассматриваемой точки. Эта величина вычисляется по формуле 197(156) для трех точек: во входе ($k_{д}$ =1), в искомой точке и посредине между ними. Принимается среднеарифметическое значение вычисленных для указанных точек величин.

Дополнение 17

ЧАСТНЫЙ СЛУЧАЙ ИСПОЛЬЗОВАНИЯ ФОРМУЛЫ 190 ДЛЯ ОПРЕДЕЛЕНИЯ Элементов ветровых волн в узкостях водохранилищ

Излагаемый ниже прием расчета предлагается применять (рис. 193) при таком сужении водоема, при котором выполняется условие $\frac{B}{D_p} < 0.25$, где B — ширина узкости по нормали к ее оси, D_p — эквивалентный разгон, определяемый по формуле 190.

Высоты волн h_y , м, в узкостях допускается определять по формуле

$$h_{\rm v} = k_{\rm v} h_i$$

где h_i — высота исходной волны, м, вычисляемая в соответствии с требованиями, приведенными в пп. 15, 19 приложения 1; k_y — коэффициент, определяемый по графику, приведенному на рис. 194, по значениям безразмерных величин gD_p/W^2 и gB/W^2 .

Рис. 193. Схема к определению элементов волн в точке М узости.

Рис, 194. График значений коэффициента ky.

Средний период $\overline{\tau_y}$, с, и средняя длина волн $\overline{\lambda_y}$, м, в узкости определяются в соответствии с требованиями, приведенными в п. 14 приложения 1, с учетом найденной величины $\overline{h_y}$.

Пример 91. Определить элементы волн h_y , $\overline{\tau_y}$, $\overline{\lambda_y}$ в точке M узкости (B = 5 км, рис. 193) при постоянном по скорости и направлению южном ветре (W = 10 м/с). Глубина воды в точке M H = 20 м.

Решение

Выполняем на рис. 193 необходимые построения и определяем по формуле 190 величину эквивалентного разгона $D_{\mathbf{p}}$:

$$D_{p} = 0.27 [D_{0} + 0.85 (D_{+1} + D_{-1}) + 0.5 (D_{+2} + D_{-2})] =$$

= 0,27 [24 + 0,85 (22 + 18) + 0,5 (18 + 14)] = 0,27 (24 + 34 + 16) = 20 Km.

Вычисляем значения $gD_p/W^2 = 1960$, $gH/W^2 = 2,0$ и по графику, приведенному на рис. 116(38), определяем безразмерную высоту $g\overline{h}/W^2 = 0,06$, откуда $\overline{h} = 0,61$ м.

По графику, приведенному на рис. 117 (39), при $gD_p/W^2 = 1960$ определяем $k_{1\%} = 2,2$ и вычисляем $h_{1\%} = 2,2 \cdot \overline{h} = 1,34$ м. При значениях безразмерных величин $gD_p/W^2 = 1960$, $gB/W^2 = 490$ определяем по графику, приведенному на рис. 194, коэффициент $k_y = 0,75$. По формуле 405 высота волны в узкости обеспеченностью 1%

$$h_{\rm y} = 0,75 \cdot 1,34 \, {\rm m} = 1,0 \, {\rm m}.$$

Для определения величин $\bar{\tau}_y$ и $\bar{\lambda}_y$ вычисляем предварительно среднюю высоту волны в узкости

$$\bar{h}_{y} = k_{y}\bar{h} = 0.75 \cdot 0.61 \text{ M} = 0.46 \text{ M},$$

а затем по безразмерной величине $gh_y/W^2 = 0.045$ определяем по графику, приведенному на рис. 116(38), безразмерное отношение $g\tau_y/W = 2.8$, откуда средний период волн в узкости $\overline{\tau_y} = \frac{2.8 \cdot 10}{9.81} = 2.9$ с. По формуле 187(151) определяем среднюю длину волны в узкости

$$\tilde{\lambda}_{y} = \frac{9,81 \cdot 2,9^{2}}{2 \cdot 3,14} = 13,1$$
 M.

СПИСОК ЛИТЕРАТУРЫ

1. Алейников С. М., Пехович А. И. Навалы льда в водохранилищах. — «Труды координационных совещаний по гидротехнике», вып. 42, Л., 1968, с. 334-342 (ВНИИГ им. Б. Е. Веденеева).

2. Александров М. Н. Судовые устройства. Л., Судпромгиз, 1968, 369 с. с ил. 3. Алешков Ю. З., Иванова С. В. Бегущие свободные волны на поверхности жидкости постоянной глубины. — «Труды координационных совещаний по гидротехнике». Дополнительные материалы к вып. 75. Л., 1972, с. 18-23 (ВНИИГ им. Б. Е. Веденеева).

4. Балашов Б. В., Певзнер Л. Б. и др. Экспериментальные исследования присоединенной массы и сопротивления воды для прямоугольного понтона. — «Труды координа-ционных совещаний по гидротехнике», вып. 66, Л., 1971, с. 147-152 с ил. (ВНИИГ им. Б. Е. Веденеева).

5. Басин Л. М. Качка судов. М., «Транспорт», 1969, 272 с. с ил.

6. Бутягин Ф. М. и др. Расчет выправительных сооружений на ледовые нагрузки.-«Труды НИИВТ», вып. 65. Новосибирск, 1971, с. 25—31. 7. Бычков В. С., Стрекалов С. С. Морские нерегулярные волны. М., «Наука», 1971,

132 c.

8. Глуховский Б. Х. Исследование морского ветрового волнения. Л., Гидрометеоиздат, 1966, 284 с.

9. Горюнов Б. Ф., Шихиев Ф. М. Морские порты и портовые сооружения. М., «Транспорт», 1970, 448 с. с ил.

10. Джунковский Н. Н., Каспарсон А. А., Курлович Е. В., Смирнов Г. Н., Сидорова А. Г. Порты и портовые сооружения. ч. І. М., Стройиздат, 1964; ч. 2. М., Стройиздат,

1967, 342 с. с ил. 11. Жданов А. М. Волновые нагрузки, действующие на морские берегоукрепительные сооружения. — Сообщение № 106 ЦНИИСа Минтрансстроя. М., 1958, 75 с. с ил.

12. Жуковец А. М. Давление разбитых волн на вертикальные стены портовых сооружений. Воздействие прибойных волн на оградительные сооружения вертикального профиля. — «Труды координационных совещаний по гидротехнике», вып. 75, Л., 1972, 50-62 с. с ил. (ВНИИГ им. Б. Е. Веденеева).

13. Жуковец А. М., Завьялов В. К., Филиппов Г. А. Определение расчетных параметров воли на огражденных акваториях. — «Труды координационных совещаний по гидротехнике», вып. 84, Л., 1973, с. 25—30 (ВНИИГ им. Б. Е. Веденеева). 14. Завьялов В. К. Некоторые особенности отражения и интерференции воли в

порту. — «Труды координационных совещаний по гидротехнике», вып. 84, Л., 1973, с. 33-38 (ВНИИГ им. Б. Е. Веденеева).

15. Загрядская Н. Н. Использование теории стоячих волн Я. И. Секерж-Зентковича при расчетах гидротехнических сооружений с вертикальной гранью. — В сб.: «Теория волн и расчет гидротехнических сооружений». М., «Наука», 1975, с. 47-60.

16. Загрядская Н. Н. Расчет нагрузки от волн на гидротехнические сооружения вертикального профиля (Рекомендации для проектирования). Л., «Энергия», 1975, 94 с. 17. Загрядская Н. Н., Лаппо Д. Д., Черможская Г. Т. Энергия стоячих волн боль-

шой высоты. — «Труды коордипационных совещаний по гидротехнике», вып. 84, Л., 1973, с. 17—24 (ВНИИГ им. Б. Е. Веденеева).

18. Ибрагимов А. М., Алимамедов Л. С. Новый прием расчета волновых воздействий на нефтепромысловые гидротехнические сооружения сквозной конструкции. --- «Нефтяное хозяйство», 1970, № 12, с. 8—12 с ил. 19. Каплун В. В., Шестаков Ю. Н. Коэффициенты сопротивления в расчетах вол-

новой нагрузки на подводный трубопровод. — «Труды координационных совещаний по гидротехнике», вып. 75, Л., 1972, с. 85—93 с нл. (ВНИИГ им. Б. Е. Веденеева). 20. Каспарсон А. А., Халфин И. Ш., Фуртенко В. П. Затухание по глубине удель-

ных волновых нагрузок на жесткие цилиндрические элементы морских нефтепромысловых сооружений при нерегулярном волнснии. --- «Нефтепромысловое строительство», 1974, № 12, с. 14-17 с ил.

21. Кирюхин И. Г., Подмогильный И. А., Тишкин И. Б. Энергетический метод расчета нагрузок от навала судов на причальные сооружения. — «Труды Черноморниипроекта», вып. 3, М., 1974, Рекламбюро МИФ, с. 129-138 с нл.

22. Королев В. А. К расчету якорных цепей плавучих сооружений при наклонном дне акватории. — «Труды координационных совещаний по гидротехнике», вып. 66. Л., 1971, с. 135—144 с ил.

23. Коржавин К. Н. Воздействие льда на инженерные сооружения. Новосибирск, 1962, 203 с. с ил.

24. Королев В. А. Расчет систем заякорения плавучих сооружений с помощью таблиц. — «Труды координационных совещаний по гидротехнике», вып. 75, Л., 1972, с. 140— 144 с ил. (ВНИИГ им. Б. Е. Веденеева).

25. Королев В. А., Строкин А. А. Расчет цепи как элемента раскрепления плавучих сооружений у обрывистого берега или набережной. — «Труды координационных совещаний по гидротехнике», вып. 50, Л., 1969, с. 630—635 с ил. (ВНИИГ им. Б. Е. Веденеева).

26. Кравчук Ю. Д., Мялкин Б. А., Марченко Д. В. Статический расчет системы заякорения плавучих причалов на цепях с подвесными массивами. — «Труды координационных совещаний по гидротехнике», вып. 40. Л., 1967 с. 375—387 с ил. (ВНИИГ им. Б. Е. Веденеева).

27. Красножон Г. Ф., Сидорова А. Г. Трансформация волн на мелководье. — В кн.: Управление поверхностными и подземными водными ресурсами и их использование. АН СССР, 1961, с. 161—208 с ил.

28 .Крылов В. В., Константинов Б. А. К определению волновых нагрузок на верховые откосы земляных сооружений. — Сб. научных трудов объединения «Союзводпроект», № 41, М., 1975, с. 108—121.

29. Крылов Ю. М. Спектральные методы исследования и расчета ветровых волн. Л., Гидрометеоиздат, 1966, 256 с.

30. Крылов Ю. М., Стрекалов С. С., Цыплухин В. Ф. Ветровые волны и их воздействия на сооружения. Л., Гидрометеоиздат, 1976, 255 с. с ил. 31. Кульмач П. П. Некоторые вопросы динамического расчета установок плавучих.

 Кульмач П. П. Некоторые вопросы динамического расчета установок плавучих заякоренных сооружений. — «Труды координационных совещаний по гидротехнике», вып. 12. Л., 1964, с. 365—374 с ил. (ВНИИГ им. Б. Е. Веденеева).
 З2. Кульмач П. П. Расчет установки плавучих средств при передаче вертикальных

32. Кульмач П. П. Расчет установки плавучих средств при передаче вертикальных усилий на якоря. — «Труды координационных совещаний по гидротехнике», вып. 40. Л., 1967, с. 322—340 с ил. (ВНИИГ им. Б. Е. Веденеева).

33. Лаппо Д. Д. Силовое воздействие гравитационных воли при обтекании гидротехнических сооружений. М., АН СССР, 1962, 115 с. с ил. 34. Лаппо Д. Д., Иванова С. В., Каплун В. В., Мищенко С. С., Шестаков Ю. Н.

34. Лаппо Д. Д., Иванова С. В., Каплун В. В., Мищенко С. С., Шестаков Ю. Н. Кинематические характеристики бегущих волн. — «Известия ВНИИГ», т. 112. Л., 1976, с. 51—57 с ил.

35. Лаппо Д. Д., Иванова С. В., Каплун В. В., Мищенко С. С. Метод расчета нагрузок от волн на обтекаемые преграды. — «Известия ВНИИГ», т. 112, Л., 1976, с. 58— 64 с ил.

36. Лаппо Д. Д., Мищенко С. М. Некоторые принципиальные уточнения теории взаимодействия нерегулярных трехмерных волн с жесткой вертикальной стенкой. «Труды координационных совещаний по гидротехнике», вып. 84. Л., 1973, с. 43—49 (ВНИИГ им. Б. Е. Веденеева).

37. Лаппо Д. Д. Вопросы теории и практики расчета воли на воде и их взаимодействия с преградами. Теория воли и расчет гидротехнических сооружений. М., «Наука», 1975, 192 с.

38. Лаппо Д. Д., Шестаков Ю. Н. Некоторые результаты исследований коэффициентов сопротивлений при обтекании круглого цилиндра волной. — «Труды координационных совещаний по гидротехнике», вып. 34. Л., 1967, с. 55—68 с ил.

39. Лаппо Д. Д., Мищенко С. М. Влияние спектральной структуры волнения на динамику сквозных гидротехнических сооружений. — «Известия ВНИИГ», т. 115, Л., 1977, с. 73—80 с ил.

40. Логинов В. Н. Расчет эквивалентной эпюры избыточного бокового давления при ударе волн о вертикальную стенку. — «Труды Союзморниипроекта», вып. 2(8). М., 1962, с. 47—59 с ил.

41. Мазур В. Ю. Теорня взаимодействия судна с причальными сооружениями. Автореферат диссертации на соискание ученой степени доктора техн. наук. Одесса, 1971, 35 с.

42. Мазур В. Ю. Линейная теория навала судна на причальные сооружения сквозных конструкций. М., «Транспорт», 1965.

43. Мальцев В. П. Определение волновых воздействий на берегозащитные подводные волноломы. «Сборник трудов ЦНИИС». Минтрансстроя, вып. 92. М., 1976, с. 71— 86 с ил.

44. Марченко Д. В. К динамическому расчету якорной цепи с одиночным грузом.— «Труды координационных совещаний по гидротехнике», вып. 75. Л., 1972, с. 136—140 с ил. (ВНИИГ им. Б. Е. Веденеева).

45. Марченко Д. В. О работе якорных цепей с подвесными массивами. — «Труды координационных совещаний по гидротехнике», вып. 66. Л., 1971, с. 126—144 с ил. (ВНИИГ им. Б. Е. Веденеева).

46. Матушевский Г. В. Раднационное напряжение (волновой напор) и средний волновой уровень нерегулярных трехмерных волн в прибрежной мелководной зоне. В кн.: Физика атмосферы и океана. М., 1975, с. 75-82.

47. Мищенко С. М. Приближенный расчет динамических усилий в якорных связях плавучих гидротехнических сооружений. — «Труды координационных совещаний по гид-ротехнике», вып. 84. Л., 1973, с. 101—105 (ВНИИГ им. Б. Е. Веденеева). 48. Натальчишин Г. Д. Определение воздействий волн на подводные берегоукрепи-

тельные волноломы на отмелых берегах. — «Гидротехническое строительство», 1974, № 4, с. 42—44 с ил.

49. Офицеров А. С. Гидравлические лабораторные исследования морского порта. В кн.: Волновые исследования гидротехнических сооружений. М., Госстройиздат, 1961, с. 5-62 с ил.

50. Офицеров А. С. Вес массивов и камня в защитных покрытиях сооружений, испытывающих воздействия волн. — «Труды ВОДГЕО», вып. 21, М., 1968, с. 75-80.

51. Петров Г. И. Результаты исследований новых конструкций отбойных устройств для морских причалов. — «Труды Союзморниипроекта», вып. 36 (43). М., «Транспорт», 1974, с. 86—92 с ил.

52. Плакида М. Э. Давление от прибойных и разбивающихся волн на вертикальную стенку. — «Гидротехническое строительство», 1971, № 8, с. 40—43 с ил.

53. Подмогильный И. А., Тишкин И. Б. Статистический и спектральный анализ результатов натурных наблюдений за навалом пришвартованного судна на причал при волнении. — «Труды координационных совещаний по гидротехнике», вып. 61, Л., 1970, с. 212—215 (ВНИИГ им. Б. Е. Веденеева). 54. Подмогильный И. А., Тишкин И. Б. Практический расчет нагрузок на причал от

пришвартованного судна при волнении. — «Труды координационных совещаний по гид-ротехнике», вып. 66. Л., 1971, с. 100—103 (ВНИИГ им. Б. Е. Веденеева).

55. Полухин В. А. К вопросу о волновом взвешивающем давлении в основании оградительных сооружений вертикального типа. Автореферат диссертации на соискание ученой степени канд. техн. наук, МИСИ, 1965, 20 с.

56. Попов И. Я., Рябых В. М. Учет волнового противодавления при проектировании креплений откосов плитами. — «Гидротехническое строительство», 1973, № 3, с. 38-14 с ил.

57. Попов И. Я., Рябых В. М. О высоте наката волны на откос. — «Труды координационных совещаний по гидротехнике», вып. 50. Л., 1969, с. 473—477 (ВНИИГ им. Б. Е. Веденеева)

58. Попов И. Я. Воздействие воли на откосы земляных плотин. — «Труды координационных совещаний по гидротехнике», вып. 75. Л., 1972, с. 93-102 с нл. (ВНИИГ им. Б. Е. Веденеева). 59. Проскуряков Б. В. Статическое давление льда на сооружения. — «Труды ГГИ»,

вып. 4(58). Л., 1948, с. 175-194.

60. Савельев Б. А. Строение, состав и свойства ледяного покрова морских и пресных водоемов. М., МГУ, 1964, 542 с. с ил. 61. Синотин В. И., Шмелева Л. А., Долгополов Ю. В. О ледовых нагрузках на морские гидротехнические сооружения. Материалы симпозиума. БИП, Тбилиси, 1972, c. 438---445.

62. Смирнов Г. Н. Океанология. М., «Высшая школа», 1974, 342 с. с ил.

63. Стрекалов С. С. Обобщенный метод расчета параметров ветровых волн. — «Труды Союзморниипроекта», вып. 36. М., 1974, с. 135-146.

64. Титов Л. Ф. Ветровые волны. Л., Гидрометеоиздат, 1969, 294 с. с ил.

65. Тишкин И. Б. Энергетический метод исследований дифракции морских волн за

одиночным молом. — «Труды Союзморниипроекта», вып. 20(26). М., 1968, с. 45—50. 66. Тишкин И. Б. Колебания судна у причала на волне. — «Труды координацион-ных совещаний по гидротехнике», вып. 61, 1970, с. 188—193 с ил. (ВНИИГ им. Б. Е. Веденеева).

67. Халфин И. Ш. Определение удельной волновой нагрузки на цилиндрические элементы сквозных сооружений в прибойной зоне. «Нефтепромысловое строительство», 1969, № 4, с. 13—17 с ил.

68. Цыплухин В. Ф. Сопоставление расчетных и измеренных величин суммарной волновой нагрузки на глубоководное оградительное сооружение вертикального профиля. — «Труды координационных совещаний по гидротехнике», вып. 84, Л., 1973, с. 67-72 (ВНИИГ им. Б. Е. Веденеева).

69. Черможская Г. Т. Взаимодействие стоячих волн с гидротехническими сооружениями. В кн.: Теория волн и расчет гидротехнических сооружений. М., «Наука», 1975, с. 35—46 с ил.

70. Шайтан В. С. Методика расчета креплений откосов на вырывающую нагрузку ледяного покрова. — «Труды ВНИИ ВОДГЕО», № 3, М., 1960, с. 149—191.

71. Шулейкин В. В. Физика моря. М., Наука, 1968, 1083 с.

72. Штенцель В. К. Определение воздействия неразбитой стоячей волны на вер-тикальную стенку. «Труды ЛИВТ», вып. 88. Л., Транспорт, 1967, с. 131-139.

73. Якунин А. Е. К вопросу об изгибе ледяного покрова с учетом вязких свойств льда. — «Труды НИИЖТ», вып. 79. Новосибирск, 1968, с. 72—82.

74. Методические рекомендации по проектированию креплений откосов земляных гидротехнических сооружений, подверженных действию ветровых волн. Л., 1972, 67 с. с ил. (ВНИИГ им. Б. Е. Веденеева).

75. Тематические научно-технические обзоры. Волновые воздействия на морские нефтепромысловые сооружения. М., ВНИИОЭНГ, 1977, 84 с. с ил.

76. Biesel F. Equations générales du second ordre de la houle irrégulière. La Houille Blanche, n. 3, 1952, p. 372-376. 77. Goda J. The fourth order approximation on the pressure of standing wa-

ves. Coastal Engineering in Japan, vol. 10, p. 1-11.

78. Goda J. Wave forces on vertical circular. Experiments proposed method of wave forces computation. Report of Port and Harbour Research Institute, № 8, 1964.

79. Kinsman B. Wind waves, their generation and propagation on the ocean sur-face. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1965, 676 p.

face. Prentice-Hall, Inc. Englewood Clifts, New Jersey, 1965, 676 p.
80. Miche R. Mouvements ondulatoires de la mer en profondeur constante ou décroissante. Ann. des Ponts et Chaussées, vol. 114, nn. 1-4, p. 25-78.
81. Nagai S. Pressures of standing waves on vertical wall. g. Waterways, Harbours and Coastal Eng. Div., Proc. Amer. Soc. of Civ. Engrs, vol. 95, № 1, 1969.
82. Penny W. Q. and Price A. T. Finite Periodic Stationary Gravity Waves in a Perfect Liquid. Phyl. Trans. Roy. Soc., London, Series A, № 244, p. 254-284, 1952.
83. Pirson W. J., Holmes P. Irregular wave forces on a pile. g. Waterway, Harbours and Coastal Eng. Div., Proc. Amer. Soc. Civ. Engrs, vol. 91, № 4, November, 1935.
84. Raianna N. R. A New Approach to the Study of Standing Surface Waves of

November, 1955.
84. Rajappa N. R. A New Approach to the Study of Standing Surface Waves of Finite Amplitude. Acta Mechanica, 9, p. 130—136, 1970.
85. Rundgren L. Water Wave Forces. A Theoretical and Laboratory Study. Bulletin of the Institute of Hydraulics, № 54, Stockholm, 1958.
86. Shore protection, planning and design. U. S. Army Coastal Engineering Research Center, № 4, p. 1—144, 1966.
87. Weggel J. R., Asce A. M. Maximum breaker height. J. Waterways, Harbours and Coastal Eng. Div., Proc. Amer. Soc. Civ Engrs, vol. 98, № 4, p. 529—547, 1972.
88. Wiegel R. L. Oceanographical Engineering. Prentice-Hall, Inc. Englewood Cliffs. New Jersey, 1964, 532 p.

Cliffs, New Jersey, 1964, 532 p

СОДЕРЖАНИЕ

П	РЕДИСЛОВИЕ			3
1.	ОБЩИЕ ПОЛОЖЕНИЯ			4
2.	НАГРУЗКИ И ВОЗДЕЙСТВИЯ ВОЛН НА ГИДРОТЕХНИЧЕСКИ	e co	ору-	
	жения вертикального и откосного профилей.			6
	Нагрузки от стоячих волн на сооружения вертикального профиля.			6
	Нагрузки и воздействия волн на сооружения вертикального про	филя	и их	
	элементы (особые случан)	•	• •	11
	Примеры 1—4,	•	• •	11
	Нагрузки от разбивающихся и прибойных воли на сооружения ве	ртика	льно-	20
		•	• •	29
	Нагрузки и воздействия на сооружения откосного профиля	•	•••	34
				39
3.	НАГРУЗКИ ОТ ВОЛН НА ОБТЕКАЕМЫЕ ПРЕГРАДЫ И СІ	KBO3	ные	
	СООРУЖЕНИЯ		• •	43
	Нагрузки от волн на вертикальную обтекаемую преграду			43
	Примеры 9—13	•	• •	57
	Нагрузки от волн на горизонтальную обтекаемую преграду.	•	• •	70
	Примеры 14—10	·	•••	83
	Пагрузки от разонвающихся воли на вертикальную обтекаемую	nperp	аду.	85
	Нагрузки от воли на сквозное сооружение из обтекаемых элементо	ов.	: :	89
	Пример 17	•		91
4.	НАГРУЗКИ ОТ ВЕТРОВЫХ ВОЛН НА БЕРЕГОУКРЕПИТЕЛЬ	ные	CO-	
	ОРУЖЕНИЯ И СУДОВЫХ ВОЛН НА КРЕПЛЕНИЯ БЕРЕГОВ И	XAHA	ЛОВ	
	Нагрузки от ветровых волн на берегоукрепительные сооружения .	•	• •	100
		•	• •	100
	Примеры 20—22	•	• •	112
Н	агрузки от судовых волн на крепления берегов каналов.	:	•••	114
				116
5.	НАГРУЗКИ ОТ СУДОВ (ПЛАВУЧИХ ОБЪЕКТОВ) НА ГИДИ	OTE	ХНИ-	
	ЧЕСКИЕ СООРУЖЕНИЯ			117
	Нагрузки от ветра, течения и воли на плавучие объекты	•	•••	118
		•	• •	121
	Нагрузки от навала пришвартованного судна на сооружение.	••	• •	121
	Нагрузки от навала судна при подходе к сооружению.	•	•••	134
		:	•••	138
6.	НАГРУЗКИ И ВОЗДЕЙСТВИЯ ЛЬДА НА ГИДРОТЕХНИЧЕСКИ	E CO	ОРУ-	
	ЖЕНИЯ			148
	Нагрузки от ледяных полей на сооружения	•		150
	Примеры 32—39	•		152
	нагрузки и воздеиствия на сооружения от сплошного ледяного по	экров	а при	157
		•	• •	158
	Нагрузки на сооружения от зажорных масс льда	:	•••	159
	Пример 41.	:		160
	Нагрузки от примерзшего к сооружению ледяного покрова при	нзме	нении	
	уровня воды.	•	• •	161
	Примеры 42—43	•	• •	162
П	риложения			165
Π	риложение 1. ЭЛЕМЕНТЫ ВОЛН НА ОТКРЫТЫХ И ОГРАЖ	(ДЕН	ных	
	АКВАТОРИЯХ			165
	Расчетные уровни воды			166
	Примеры 44—45		• •	166

Расчетные характеристики ветра.	168
Примеры 40—48	171
Примеры 49—56	177
Элементы волн в мелководной зоне	184
Примеры 37-03.	192
	194
Элементы волн на огражденной акватории	196
Приложение 2. ТЕРМИНОЛОГИЯ И ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ	200
Терминология.	205
Основные буквенные обозначения	206
Дополнения	207
при действии стоячих волн.	207
	207
бивающихся волн.	210
1. Определение нагрузок.	210
2. Методика динамического расчета устоичивости оградительных сооружении	212
Пример 72.	215
Дополнение 3. Определение волновых нагрузок на сквозные сооружения на	
основе данных натурных наблюдений.	219
	220
нерегулярных волн в глубоководной зоне моря.	230
	239
Дополнение 5. Определение высоты наката волн на откосную облицовку,	040
прикрытую внизу песчано-галечным пляжем	243
Лополнение 6. Скорости ветра в основных пунктах побережий морей и океа-	240
нов СССР	246
Дополнение 7. Определение нагрузок на анкерные опоры и усилий в якор- ных связях в условиях плоской задачи.	246
Примеры 76—83.	260
Дополнение 8. Определение нагрузок на анкерные опоры, усилий в связях	
и перемещений плавучих объектов с учетом динамики дейст- вия воли.	270
Примеры 84—85	2/4
Дополнение 9. Определение расчетных характеристик судов.	210
операций морских судов	285
Дополнение 11. Определение элементов волн, предельных для стоянки при-	
швартованного судна у причала	286 287
Примеры 86—87	290
Дополнение 13. Упрощенные способы определения некоторых видов воз-	300
деиствия льда на гидротехнические сооружения. Дополнение 14. Уточнение расчетных элементов волн и волновых нагрузок	205
по данным натурных наблюдений	305
Примеры об-оу.	306
Пример 90.	307
Дополнение 16. Определение потерь и прирашений волновой энергии на ог-	307
ражденной акватории. Дополнение 17. Частный случай использования формулы 190 лля определе-	507
ния элементов ветровых волн в узкостях водохранилищ.	308
	311
where the second s	

РУКОВОДСТВО По определению нагрузок и воздействий на гидротехнические сооружения (волновых, ледовых и от судов)

Научные редакторы: Д. Д. ЛАППО, Б. А. УРЕЦКИЙ Редактор Л. Г. СЕТКО Технический редактор Т. М. БОВИЧЕВА Слано в набор 15,111-1977 г. Подписано к нечати 30/VI 1977 г. М-21702. Формат 70×108/16. Бумага типографская № 3. Прив. л. 27,65. Печ. л. 19,75-+2 вкл. Уч.-изд. л. 25,83. Тираж 2000. Зак. 143. Цена 4 руб.

Типография Всесоюзного ордена Трудового Красного знамени научно-исследовательского института гидротехники имени Б. Е. Веденеева. 195220, Ленинград, Гжатская ул., 21.

Замеченные опечатки

Стр. 38, рис. 25(12). — На рис. 12 относительное волновое противодавление сверху вниз должно быть: 0,1; 0,2; 0,3; 0,5; 0,7.

Зак 143. Тираж 2000.